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AFIT/DS/ENG/98-12 

Abstract 

The complexity of current software applications is overwhelming users. The 

need exists for intelligent interface agents to address the problem of increasing 

taskload that is overwhelming the human user. Interface agents could help alle- 

viate user taskload by extracting and analyzing relevant information, and providing 

information abstractions of that information, and providing timely, beneficial assis- 

tance to users. These agents could communicate with the user through the existing 

user interface and also adapt to user needs and behaviors. 

Central to providing assistance to a user is the issue of correctly determining 

the user's intent. This dissertation presents an effective, efficient, and extensible 

decision-theoretic architecture for user intent ascription. The multi-agent archi- 

tecture, the Core Interface Agent architecture, provides a dynamic, uncertainty- 

based knowledge representation for modeling the inherent ambiguity in ascribing 

user intent. The knowledge representation, a Bayesian network, provides an intu- 

itive, mathematically sound way of determining the likelihood a user is pursuing a 

goal. This likelihood, combined with the utility of offering assistance to the user, 

provides a decision-theoretic approach to offering assistance to the user. The archi- 

tecture maintains an accurate user model of the user's goals within a target system- 

environment. The on-line maintenance of the user model is performed by a collec- 

tion of correction adaptation agents. Because the decision-theoretic methodology 

is domain-independent, this new methodology for user intent ascription is readily 

extensible over new application domains. Furthermore, it also offers the ability 

to "bootstrap" intent understanding without the need for often lengthy and costly 

knowledge elicitation. Thus, as a side benefit, the process can mitigate the classic 

knowledge acquisition bottleneck problem. 

IX 



The architecture's utility for providing assistance to users is demonstrated 

in three disparate systems — a probabilistic expert system shell, a virtual space 

plane, and a natural language interface information management system. Results 

indicate the CIA architecture is capable of providing useful assistance to users. This 

assistance is tailored to individual users based on the tasks they are performing, 

their preferences, biases, abilities, and application usage patterns. Furthermore, the 

assistance can be adapted to the dynamic needs and goals of users over time. 

x 



A DECISION THEORETIC APPROACH 

FOR INTERFACE AGENT DEVELOPMENT 

/.   Introduction 

As computers have become commonplace in the Department of Defense, business, 

and at home, researchers and the software industry have become painfully aware 

of the need to help users perform their tasks. Determining how to get the right 

information into the right form with the right tool at the right time is a monumental 

task. The need exists for solutions to address the problem of increasing task load 

that is overwhelming the human user. These software solutions could help alleviate 

user task load by providing abstractions and intelligent assistance that communicates 

with the user through the existing user interface and adapts its assistance to dynamic 

user needs and behaviors. The solution should be generic insofar as its benefits 

can be applied to any highly interactive and information intensive software system. 

Examples range from virtual battlefield management systems to freight and parcel 

management systems to Wall Street financial investment and analysis. 

To that end, research continues into interface or "personal assistant" agents. 

The purpose of these agents is to reduce information overload by collaborating with 

the user, performing tasks on the users' behalf (Maes 1994a). Examples of inter- 

face agents include office assistance agents, such as e-mail, scheduling, and financial 

portfolio management agents (Maes 1994a; Sycara et al. 1996; Boone 1998); tutor 

and coach agents (Chin 1991; Conati, Gertner, VanLehn, and Druzdzel 1997); and 

character-based assistants for word processors, spreadsheets, and presentation soft- 

ware, such as the Office Assistants found in Microsoft's Office '97 software (Horvitz 

1997; Horvitz et al.  1998).  Most of these agents have either been pedagogical or 



narrowly focused (i.e., the agents are useful for a small number of domains and/or 

model a small fraction of the possible actions). 

Reducing user task load involves providing intelligent assistance to the user. 

Providing intelligent assistance and performing tasks on the user's behalf requires 

an understanding of the goals the user is performing, the motivation for pursuing 

those goals, and the actions that can be taken to achieve those goals. The term user 

intent denotes the actions a user intends to perform in pursuit of his/her goal(s). 

The term user intent ascription is the attribution of actions to the goal(s) a user will 

pursue. That is, user intent ascription is the process of determining which actions are 

attributable to a specific goal or goals. Therefore, for an interface agent to be able to 

assist the user in pursuing those goals, the agent must be capable of ascribing user 

intent to offer timely, beneficial assistance. An accurate user model is considered 

necessary for effective ascription of user intent. 

User modeling is concerned with how to represent the user's knowledge and 

interaction within a system to adapt the system to the needs of the user. Researchers 

from the fields of artificial intelligence, human-computer interaction, psychology, 

education, as well as others have investigated ways to construct, maintain, and 

exploit user models. The benefit of utilizing a dynamic user model within a system 

is to allow that system to adapt over time to a specific user's preferences, work 

flow, goals, disabilities, etc. To realize this benefit, the user model must effectively 

represent the user's knowledge and intent within the system to accurately predict 

how to adapt the system. The elicitation, specification, design, and maintenance of 

an accurate cognitive user model is necessary for effective ascription of user intent. 

Current approaches to ascribing user intent (e.g., statistical correlation, 

AND/OR graphs, rule-based approaches) tend to be reliable only under restricted 

conditions, to be prone to computational explosion, to use weak updating or learning 

methods, and/or to fail to be easily extensible. An underlying problem of current 

interface agent research is the failure to adequately address effective, efficient, and 



extensible knowledge representations and associated methodologies suitable for mod- 

eling the user's interactions with the system. Current user models lack the represen- 

tational ability to manage the uncertainty and dynamics involved in ascribing user 

intent and modeling user behavior for all but limited domains. Ascription of user 

intent is inherently uncertain. Accurately determining the goal(s) a user is pursuing 

based on observed actions is a difficult task for several reasons. Users may pursue 

more than one goal at a time. Actions performed to achieve a goal can be attributed 

to several goals. Users' needs and goals change over time. Due to the simple fact 

that most environments where interface agents are utilized are very dynamic, user 

models must be capable of adapting over time to better model the user. 

The integration of interface agents into software applications is eased by the 

use of an agent development environment and/or tool. Several commercial prod- 

ucts exists to perform this task (Mitsubishi Electric Information Technology Center 

America 1997; Concordia Home Page 1998; IBM 1997; IBM Corp. 1998a; General 

Magic 1998; Microsoft 1997; ObjectSpace, Inc. 1998), as well as several research 

agent development environments (Chauhan and Baker 1998; Cohen, Cheyer, Wang, 

and Baeg 1994; Martin, Cheyer, and Lee 1996; Barbuceanu and Fox 1996a). The 

underlying problem of agent development is a fundamental lack of methodologies, 

principles, heuristics, and tools to support the agent development life cycle. To 

date, no adequate theory of interface agent knowledge engineering and design exists^ 

Every designer of an interface agent reinvents the proverbial wheel. The lack of 

methodologies for agent-based systems is in no small part attributable to the follow- 

ing two observations: "agent-based engineering" differs significantly from software 

engineering for direct-manipulation systems (Hook 1997) and artificial intelligence 

(AI) techniques for agent-based systems differ from "traditional AI" (Maes 1994b). 

Thus, a foundation on which to base knowledge engineering and design for interface 

agents will greatly impact the interface agent and user modeling research communi- 

ties. 



This dissertation provides such a foundation. The foundation accounts for 

the need for dynamic, uncertainty-based interface agent user models for user intent 

ascription. The goal of this dissertation is to advance the state of the art in intent 

ascription within a software agent paradigm. The dissertation hypothesis can be 

stated as follows: 

An effective, efficient, and extensible decision-theoretic architecture for 
user intent ascription improves an interface agent's utility for providing 
timely, beneficial assistance to the user. 

The main thrust of this dissertation is to show that a powerful user intent 

ascription methodology can be produced by an agent architecture that contains a 

decision-theoretic user model, combining a Bayesian belief updating reasoning capa- 

bility coupled with a utility model. The resulting Core Interface Agent architecture 

is capable of making on-line user model corrections and is shown to be a robust solu- 

tion to the intent ascription problem. Because the decision-theoretic based strategy 

is domain-independent, this new methodology for user intent ascription is readily 

extensible over new application domains. Further, it also offers the ability to "boot- 

strap" intent understanding without the need for often lengthy and costly knowledge 

elicitation. Thus, as a side benefit, the process can mitigate the classic knowledge 

acquisition bottleneck problem. 

1.1    Motivation 

Several prior publications motivate the work presented in this dissertation. For 

publications directly resulting from the research presented in this dissertation, see 

Appendix A. Preliminary research into the use of an interface agent in an expert 

system shell domain was accomplished (Harrington, Banks, and Santos Jr. 1996a; 

Brown, Santos Jr., and Banks 1997; Brown, Santos Jr., and Banks 1998a). The 

resulting architecture, GESIA (Harrington, Banks, and Santos Jr. 1996b), used 

Bayesian networks (Pearl 1988) as an underlying knowledge representation for user 

modeling (Brown, Harrington, Santos Jr., and Banks 1997) and reasoning mecha- 



nism for predicting user preferences (Harrington and Brown 1997). Usability studies 

performed using GESIA indicated users welcomed the assistance GESIA provided 

in helping them do their work (Banks, Harrington, Santos Jr., and Brown 1997). 

However, GESIA was a simple agent, assisting only when the user first started the 

system and on very few actions (e.g., tool selection). Furthermore, GESIA's sug- 

gestions were incorrect or ignored by users often enough that ways to improve its 

effectiveness were sought. Key to this improvement is determining what is important 

to model to make correct suggestions to the user. With that motivation, the work 

in this dissertation commenced. 

1.2   Main Contributions of the Dissertation 

A holistic, decision-theoretic methodology explicitly takes into account all as- 

pects of the agent development life cycle, starting with the agent's requirements. 

Methods for determining when those requirements are not being met and how to 

correct the agent's "behavior" are developed. For the agent to perform within its 

environment, one must determine what is important to model in the domain, us- 

ing associated discriminators and metrics to determine and define when and how to 

dynamically change the underlying knowledge representation. An explicit represen- 

tation of users' goals within the domain, with associated metrics to determine when 

a user is pursuing those goals and how to offer assistance, allows an agent to ascribe 

the user's intent. The interface agent uses a decision-theoretic approach to deter- 

mine when and how to make suggestions. This approach is paramount to providing 

timely, beneficial assistance to the user. 

This dissertation presents an effective, efficient, and extensible decision- 

theoretic architecture for user intent ascription. The multi-agent architecture, the 

Core Interface Agent architecture, provides a dynamic, uncertainty-based knowl- 

edge representation for modeling the inherent ambiguity in ascribing user intent. 

The knowledge representation, a Bayesian network, provides an intuitive, mathe- 



matically sound way of determining the likelihood a user is pursuing a goal. This 

likelihood, combined with the utility of offering assistance to the user provides a 

decision-theoretic approach to offering assistance to the user. The architecture main- 

tains an accurate user model of the user's goals within a target system environment. 

The maintenance of the user model over time is performed by a collection of correc- 

tion adaptation agents. The agents base the utility of their individual corrections to 

adapt the user model on measurable requirements levied on the interface agent. 

The main contributions of this dissertation are found in Chapters III, IV, V, 

and VI and are as follows: 

• User Intent Ascription Philosophy — Chapter III presents a philosophy 

of offering assistance to users. The approach is foundational to the construc- 

tion of a dynamic, uncertainty-based knowledge representation for user intent 

ascription. This chapter also discusses how interface agents play a key role 

in symbiotic information retrieval and decision support, a new approach for 

collaborative, decision-theoretic assistance. 

• Decision-Theoretic Approach — Chapter IV presents a holistic, decision- 

theoretic approach to interface agent assistance. The dissertation describes 

how an interface agent can be used as a decision maker on behalf of the user. 

The interface agent uses classical decision theory under uncertainty and multi- 

attribute utility functions, where the attributes are various human factors (e.g., 

work load, spatial and temporal memory, skill, expertise, etc.). The decision- 

theoretic approach offers several advantages over current statistical correlation 

approaches. First, the approach explicitly defines and models those factors 

affecting the user's decision making process. Purely statistical approaches to 

offering assistance do not account for the reasons (i.e., why) a user chooses an 

action in pursuit of a goal. As a result, these statistical correlation methods 

can only change the probabilities associated with taking an action given an 

a priori situation. A decision-theoretic approach allows the interface agent to 



change the underlying reasons. Second, the use of a decision-theoretic approach 

assures the assistance offered is not only probably the correct assistance but also 

of high utility to the user. 

• Core Interface Agent (CIA) Architecture — Chapter IV also presents the 

Core Interface Agent (CIA) architecture, which capitalizes on the strengths of 

the three most prominent research fields in interface agent research: artificial 

intelligence, human-computer interaction, and user modeling. These strengths, 

as well as weaknesses, are discussed in Chapter II at a level of detail not 

typically found in a dissertation. The detailed investigation of the plethora of 

research into interface agents from the three different fields serves two purposes. 

First, the investigation provides an insight for researchers from one field into 

the advantages and disadvantages of the approaches taken in the other two 

fields. Second, since the research presented in this dissertation draws from 

all three research fields, the detailed background serves to provide insight into 

a synergistic approach for interface agent development by reviewing existing 

ideologies, approaches, techniques, heuristics, methods, and tools used in the 

three fields. 

The CIA architecture provides timely, beneficial assistance to the user, uti- 

lizing the decision-theoretic assistance approach. The architecture addresses 

the need for effective, efficient, and extensible knowledge representations for" 

modeling the user's interactions with the system. The CIA architecture, a 

multi-agent system, also addresses the need for dynamic, uncertainty-based 

knowledge representations for modeling user intent. The architecture uses a 

Bayesian network-based user model that accurately reflects the user's intent. 

The construction of the user model follows from the user intent ascription 

philosophy and decision-theoretic approach. The architecture is modularly 

extensible, providing designers the ability to utilize the architecture in many 

domains by extending the knowledge captured by the user model. 



• Correction Model — Chapter V details methods for maintaining an accu- 

rate user model integrated into the CIA architecture. Four requirements are 

levied on the interface agent. The agent's ability to meet the requirements is 

measured by requirement metrics, which are combined using a multi-attribute 

requirements utility function. The chapter describes how the CIA architec- 

ture can use the resulting requirements utility function to determine how well 

an interface agent is meeting its requirements. A correction model based on 

a contractual bidding process, the requirement metrics, and the requirements 

utility function is presented. The bidding process is begun when the require- 

ments utility functions falls below a threshold. The bidders are a multi-agent 

system of correction adaptation agents. Each correction adaptation agent pos- 

sesses a (possibly) unique method for correcting the interface agent, specifically, 

the interface agent's user model. The correction adaptation agents compete 

in a bidding process to determine which agent "wins" the bid. A correction 

adaptation agent wins the bid by providing the greatest improvement to the 

requirements utility function's value, when evaluated over a history of actions. 

The correction model and correction adaptation agents offer several advantages 

over existing techniques for adapting user models. First, the correction model 

addresses when and how to dynamically change the user model and prevents 

a quixotic search for ways to improve an inaccurate user model. Second, the 

collection of correction adaptation agents provides many different techniques 

for improving the user model. Existing user model correction techniques are 

usually limited to one (machine learning) technique to adapt the user model. 

Using the requirements utility function, the interface agent can determine the 

best correction adaptation. Third, the agents are (typically) domain inde- 

pendent and therefore can be used across different domains. This approach 

supports rapid prototyping of new systems using the CIA architecture. Do- 

main independence is not a requirement of correction adaptation agents. One 



of the most promising results from this research is that correction adapta- 

tion agents can be used for knowledge acquisition. New goals and actions 

can be added to the user model as the user interacts with his/her environ- 

ment. This procedural-based approach to user model construction allows the 

interface agent to dynamically construct the user model without prior domain 

knowledge. The dynamic construction of the user model virtually eliminates 

the knowledge acquisition bottleneck that plagues knowledge-based systems. 

Fourth, this chapter describes a theory for correction adaptation agent evolu- 

tion, showing how a collection of "atomic" correction adaptations can evolve 

into fully functional agents. This theory is useful in answering the question 

"which correction adaptation agents do we build?" 

• Development Environment — To produce an efficient, effective, and exten- 

sible architecture requires an agent development environment that is sensitive 

to life-cycle changes of the agents composing the architecture. All changes 

to individual agents or the agent architecture must be managed holistically 

because required symbiotic reasoning and related information reasoning and 

decision support is an emergent property of the architecture. That is, the 

architecture's ability to provide assistance is distributed and the outcome of 

perhaps many interactions within and among agents. Thus, provisions must be 

made in an agent development environment to support instantiation and main^ 

tenance of this critical functionality, emanating from the collection of agents. 

An investigation of tools to support the development of interface agents un- 

covered major deficiencies in these environments, including a lack of environ- 

ment specification, adaptivity mechanisms, and knowledge base and reasoning 

mechanisms. Chapter VI presents a generic interface agent development envi- 

ronment architecture. This chapter describes the details of the architecture, 

detailing solutions to deficiencies identified in existing agent development en- 

vironments and how the development environment can support the existing 



CIA architecture. In particular, the architecture provides a knowledge engi- 

neering framework for interface agent development. This framework facilitates 

the specification and design of interface agents, taking into account compliance 

with existing computer-based systems and user interface standards. Further- 

more, the framework allows for the incremental development of the interface 

agent user model, to include the Bayesian network-based user model, user 

profile, and user utility model. The architecture advances the symbiotic in- 

formation reasoning and decision support goal by providing a comprehensive 

software engineering, knowledge engineering and acquisition tool. 

The multi-agent CIA architecture presented in this dissertation is used in three 

disparate application domains: a virtual space plane, a probabilistic expert system 

shell, and a natural language interface information management system. Results 

indicate the CIA architecture is capable of providing timely, beneficial assistance 

to users. This assistance is tailored to individual users based on the tasks they 

are performing, their preferences, biases, abilities, and application usage patterns. 

Furthermore, the assistance can be adapted to the dynamic needs and goals of users 

over time. 

10 



II.   Background 

This chapter introduces relevant background on several topics related to this disser- 

tation. The first section discusses interface agents, from the history of interface agent 

research as it emerged from two contributing research fields (human-computer in- 

teraction (HCI) and artificial intelligence (AI)), to agent development environments 

that can be used to help software developers construct agents. The next section dis- 

cusses the relatively new research field of user modeling. This discussion shows how 

user modeling has borrowed from the strengths of the HCI and AI research fields. 

Throughout the chapter, many examples of systems, including interface agents, util- 

izing user models are given. The section proceeds to give a detailed presentation 

of the elicitation, specification and design, and verification and validation of various 

user models. Providing assistance to users of a complex system involves being able 

to decide which goals the users may be pursuing while interacting with the system. 

Deciding the form of the assistance (i.e., what, when, why, and how) requires deci- 

sion making involving uncertainty. The last two sections discuss background on both 

decision theory and a knowledge representation for uncertainty, Bayesian networks. 

2.1    Interface Agents 

While the term "expert system" was the buzzword of the 1980's, "agent" is the 

1990's buzzword. Wooldridge and Jennings (1995), Franklin and Graesser (1996), 

and Petrie (1996), as well as others, have surveyed the plethora of agent definitions. 

While there are many types of agents (cf. Franklin and Graesser's agent taxonomy), 

this dissertation is concerned only with interface agents. For concreteness, the usage 

of the term "interface agent" is defined, using a hybrid of several definitions found 

in the literature: 

An adaptive interface agent is a software system situated within a do- 
main environment that adaptively senses, acts, and reacts within this 

11 



environment over time, to pursue its own goals and the goal of providing 
collaborative assistance to the user. 

Assistance, as used above, is broadly defined to mean timely, beneficial sug- 

gestions, tutoring, help, interface adaptations, etc. for the user. Not all applications 

are suited for the addition of an interface agent. Waern (1997) states, 

The main application areas for intelligent interfaces are thus such where 
the knowledge about how to solve a task partially resides with the com- 
puter system. Since the user does not know exactly what should be done, 
he or she cannot manipulate the computer as a tool, but must ask the 
system to do something for him or her. This request may be incomplete, 
vague or even incorrect given the user's real needs. 

The word "intelligent" is omitted from the definition (and requirements) since 

an interface agent need not be "intelligent." Waern (1997) requires intelligent in- 

terfaces to exhibit some of the requirements this dissertation places on interface 

agents, including adaptivity (see Section 5.1). Specifically, she states the following 

techniques connote "intelligence" in interfaces: 

• User Adaptivity — Techniques that allow the user-system interaction to be 

adapted to different users and usage situations. 

• User Modeling — Techniques that allow a system to maintain knowledge 

about a user. 

• Natural Language Technology — Techniques that allow a system to inter- 

pret or generate natural language utterances, in text or in speech. 

• Dialogue Modeling — Techniques that allow a system to maintain a natural 

language dialogue with a user, possibly in conjunction with other interaction 

means (multimodal dialogue). 

• Explanation Generation — Techniques that allow a system to explain its 

results to a user. 

Interface agents are a relatively new area of research within the human- 

computer interface (HCI) and artificial intelligence (AI) communities. Höök (1997) 

12 



outlines a number of problems that must yet be solved by these research communi- 

ties before intelligent user interfaces become a reality. In particular, she states there 

is a need to develop: 

• Usability principles for intelligent interfaces versus direct-manipulation sys- 

tems; 

• Reliable and cost-effective intelligent user interface development methods; 

• A better understanding of how intelligence can improve the interaction; 

• Authoring tools that enable easy development and maintenance. 

The next two subsections discuss the relationship of interface agents to both 

the HCI and AI communities in terms of the development history, how both approach 

the field, and their strengths and weaknesses1. While there is no clear delineation 

between the two communities with regards to their research in interface agents, 

both approach the research field of interface agents differently. Section 2.3 ends 

with a discussion on how the field of user modeling has brought the HCI and AI 

communities together for the purpose representing users' knowledge and interaction 

within a system. 

2.1.1 HCI Historical Development. One word that characterizes the HCI 

community's research into interface agents is "customization." The HCI community 

has concerned itself with what the user can do with the agent and the interaction 

between human and agent. HCI researchers concern themselves with how techniques 

and methodologies affect user performance. The strength of HCI research in interface 

agents is its attentiveness to the user, focusing on what a user needs to perform 

his/her tasks, and how best to represent information to the user. 

1 While it is not the intention to stereotype a particular research field too narrowly, it is ad- 
vantageous to point out the general "slant" different research communities take on interface agent 
research. 
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Baecker, Grudin, Buxton, and Greenberg (1995) present a history of HCI re- 

search2. They trace the research from customizable systems to intelligent (interface) 

agents. Three approaches frame the direction of HCI research: 

• Educate developers about users and their work. 

• Form active collaborations among users and developers when designing systems. 

• Shift responsibility for final design decisions from the initial developers to the users 

or to people who are closer to the users. 

The last approach has been central to the agent research performed by the HCI 

community. Customizable systems allow end users to adjust a system to their specific 

needs and tasks. These adjustments can be as simple as allowing a user to choose 

from predetermined alternatives to providing users a way to alter the system itself. 

Related to this customization is the ability for users to share useful customization 

with other users. 

Several user customization techniques exist, including preferences and tem- 

plates (cf. Microsoft's Powerpoint templates), customizable workspaces (cf. Mi- 

crosoft Word's ability to modify tool bars), end-user programming scripts (cf. Nov- 

ell Groupwise's mail filtering rules), and programming-by-example (cf. any macro 

recorder). Adaptive interfaces are another customization technique, but one where 

the user is not in complete control. Adaptations are done either via statistical av- 

erages of users or dynamic user models (Baecker, Grudin, Buxton, and Greenberg 

1995). Examples of the use of statistical averages include the adaptation of hyper- 

media menus based on frequency of selection (Akoulchina and Ganascia 1997) and 

the method used by Harrington and Brown (1997) to select tools, communication 

modes, and files. Intelligent tutoring and coaching systems are an example of systems 

with dynamic user models (Conati et al. 1997). 

2Myers (1996) summarizes the (brief) history of HCI technology from the perspective of the 
impacts of university research on key technologies. Of note, he does not mention interface agents 
until his final paragraph. 
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The 1990s saw the emergence of "intelligent" interface agents. Within the 

realm of HCI research, interface agents are considered "personal assistants" collab- 

orating with the user. Several design considerations are typically considered by the 

HCI community and include the following (Baecker et al. 1995): 

• Give the user a feeling of control. 

• Pay attention to the nature of the human-agent interaction. 

• Employ built-in safeguards (protect the user). 

• Provide the user with accurate expectations. 

• Cater to privacy concerns. 

• Hide complexity. 

HCI has also been concerned with how to represent agents to the human. King 

and Ohya (1996) investigate the affect of anthropomorphizing (via adding "faces") 

the interface. Billinghurst and Savage (1996) investigate the use of a rule-based 

expert system together with voice, gesture, body position and context in a virtual 

reality interface. Related to this representation are the issues of trust, anthropo- 

morphization, and privacy. Researchers are investigating ways to anthropomorphize 

agents in an attempt to make the agents more personable and increase trust in the 

agent's abilities (Koda and Maes 1996). HCI researchers are concerned with the ways 

to convey the agent's internal state to a user. If the old adage "first impressions are 

lasting impressions" is taken to heart, HCI researchers are concerned with the user's 

impressions with the agent. If a user does not trust the agent — typically as a result 

of failing to understand the agent's "abilities" — future interaction will be affected. 

2.1.2 AI Historical Development. A word that characterizes the AI com- 

munity's research into interface agents is "delegation." In contrast to the HCI com- 

munity, the AI community as a whole has concerned itself with what an interface 

agent can do for the user.   AI addresses how techniques and methodologies affect 
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agent performance. The community is also concerned with models of agent commu- 

nication. 

Maes (1994b) states that agent research began in 1985, when the term "animat 

approach" was coined. Maes also does an excellent job of distinguishing "traditional 

AI" from the study of autonomous agents (what this dissertation terms agent AT). 

In particular, consider the following: 

• Traditional AI focuses on "depth" versus "breadth" of knowledge and competence 

within a domain. Agent AI must exhibit a wide diversity of competence, but 

at a shallower level. 

• Traditional AI focuses on "closed" systems.    Agent AI must deal with agents 

situated in the environment, which is typically dynamic in nature. 

• Traditional AI deals with one problem at a time; agent AI must contend with 

multiple, competing problems. 

• Traditional AI has static knowledge because it models domain expertise. Agent 

AI knowledge is dynamic because it models users. 

• Traditional AI is not concerned with the developmental aspects of the knowledge 

structure; agent AI relies on adaptivity of the knowledge structures, incremen- 

tally modifying the structures. 

Maes discusses the basic problems AI researchers have with adaptive au- 

tonomous agents, which includes interface agents. The two basic problems are the 

following: 

• Action selection — what to do next given time-varying goals? 

• Learning from experience — how to improve performance over time? 

These problems are far from solved and attempts to address them are active 

research topics. 
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In comparison with HCI research for allowing users to explicitly share useful 

customizations with one another, AI techniques have revolved around agents' com- 

munication with one another to share useful information and theories modeling that 

communication. Architectures and models have been built around agent cooper- 

ation and negotiation (Zeng and Sycara 1996; Müller 1996). The term "agency" 

has evolved out of this area of research. Several AI interface agent projects have 

successfully married the approach of sharing users' customizations with agent com- 

munication (Maes 1994a). 

Whereas the HCI approach to interface agent research focuses on a collabo- 

ration between human and agent, AI research has relied heavily on the strength of 

other AI research fields, in particular knowledge representation, machine learning 

and planning. For example, compare the collaborative nature used by the Agent 

Building Shell for completing conversation rules (Barbuceanu and Fox 1996b) with 

Maes' approach to learning new situation-action pairs (Maes 1994a). The former re- 

lies on the user to help specify incomplete rules while the latter relies on case-based 

reasoning to "recognize" new situations. 

2.1.3 Interface Agent Examples. In recent years, a plethora of interface 

agents have emerged. This section is by no means an exhaustive enumeration of 

interface agents. The interface agents presented were chosen for several reasons. 

Some were chosen for their historical significance (e.g., they were the first of their 

kind), while others were chosen for the contribution they made to the field of interface 

agent research, while yet others were chosen because they represent the "cutting 

edge" of current interface agent research. This section provides a short background 

on the types of interface agents and the domains where they have been used to 

date. Lewis (1998) segregates agents for human-agent interaction (HAI) into three 

categories: anticipatory, filtering, and semiautonomous. 
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Anticipatory agents attempt to automate some portion of the action-execution 

cycle. The purpose of these agents is to use information gathering techniques within 

the confines of the application domain to determine a context used to infer the user's 

intent. Many of these agents are constructed as adaptive agents, learning a user's 

preferences, abilities, goals, and needs over time. Two subclasses of anticipatory 

agents exist: (1) those attempting to learn a user's categorization scheme and (2) 

those that seek to infer a user's plan of action by observing atomic actions within 

the domain. 

A number of anticipatory interface agents have been integrated into complex 

application environments. CAP (Calendar APprentice) (Mitchell, Caruana, Freitag, 

McDermott, and Zabowski 1994) is an agent that learns room scheduling preferences. 

Users enter and edit meetings on a calendar and instruct the CAP agent to send invi- 

tation to the invitees. CAP uses the "looking over the shoulder" approach (Maes and 

Kozierok 1993), acquiring rules for predicting the duration, location, and times of 

meetings. Maes and Kozierok (1993) and Kozierok and Maes (1993) present a similar 

scheduling agent using situation-action pairs to recognize the context of a user's inter- 

actions and the appropriate action to take given the situation. COACH is an advisory 

system for users writing Lisp programs (Selker 1994). COACH builds an adaptive 

user model of a user's experience and proficiency, and using its domain knowledge 

of Lisp selects appropriate and timely advice (e.g., a function definition, example, 

syntax, style guide, etc.) to offer the user. Lumiere is a multi-year research project 

for integrating intelligent assistance into the Microsoft Office product line (Horvitz 

et al. 1998). Lumiere uses a Bayesian network user model to determine the probable 

goals a user is pursuing and the needs associated with the goals to provide assis- 

tance to users in meeting those needs. Remembrance Agent (Rhodes 1996) is an 

automated information retrieval system agent, integrated into the Emacs environ- 

ment (Stallman 1997). Remembrance Agent uses memory-based reasoning (Stanfill 

and Waltz 1986) to help users remember relevant information related to their current 
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goal. Physician's Assistant (Barker 1998), based on IBM's Ginkgo technology (IBM 

Corp. 1998b), also uses memory-based reasoning. The assistant helps doctors pre- 

scribe drugs, including frequency, duration of treatment, and whether it should be 

taken with meals, for a given situation and recalls a doctor's own practice pattern. 

Filtering agents are similar to anticipatory agents in that they also attempt to 

automate some user actions. Specifically, the filtering agents are concerned with how 

to automate a user's "filtering mechanism" for determining what is relevant given 

a scenario and only presenting the relevant information, filtering out the irrelevant 

information. Examples of filtering agents include the following: 

• Maxims (Lashkari, Metral, and Maes 1994), an e-mail filtering agent; 

• Ringo (Maes 1994a), a music recommendation system; 

• Letizia (Lieberman 1995; Lieberman 1997), one of the first World Wide Web 

(web for short) "surfing" agents utilizing simple keyword-frequency information 

retrieval to suggest relevant "near-by" web pages; 

• CiteSeer (Bollacker et al. 1998), a web agent for automatic retrieval and iden- 

tification of relevant publications; 

• WebMate (Chen and Sycara 1998), a personal web information retrieval agent 

utilizing multiple heuristics for determining relevance for further browsing and 

searching; ~ 

• WebAce (Han et al. 1998), a web agent that automatically categorizes and 

filters a set of documents and performs new queries used to search for relevant 

related information; 

• SHOPPER'S EYE (Fano 1998), a personal digital assistant (PDA)-based agent 

that uses the concept of physical location-based filtering via global positioning 

satelites (GPS) to support mall shopping. 

Semiautonomous agents are characterized by a user's explicit activation of 

the agents to perform tasks on the user's behalf.   Activation of the agents occurs 
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via one or more instructional interfaces: form-based interfaces, high-level scripting 

languages, direct-manipulation interfaces, programming by example, and visual lan- 

guages. 

One of the earliest semiautonomous agents was Information Lens (Malone et al. 

1989). The agent's domain is an electronic mail application. Information Lens assists 

users with the filtering, sorting, prioritization, and general management of e-mail. 

Users instruct Information Lens via e-mail composed as semistructured messages. 

The messages are user-defined templates that specify message type (e.g., announce- 

ment) with additional header fields (e.g., topic, date). Users import, create, or 

modify existing active rules for processing e-mail. These active rules serve as simple 

semiautonomous agents, managing a user's e-mail on their behalf. 

One of the most well known software agents employing the semiautonomous 

notion is the Internet Softbot (Etzioni and Weld 1994). Softbot uses a Unix shell 

and the World Wide Web to interact with a wide range of Internet resources. For 

example, the softbot can be "told" to locate all papers that reference this disser- 

tation. The softbot provides an integrated and expressive X-windows, form-based 

graphical user interface to the Internet, but one which the user explicitly activates. 

The interface shields users from the underlying subset of first-order logic used as 

a goal planning language. As a "personal assistant," the softbot is robust in that 

ambiguity, omission, and errors in user requests are tolerated. 

Programming-by-example systems create generalized programs from examples 

provided by users (Cypher 1991) and bridge the gap between anticipatory and semi- 

autonomous agent systems. Eager is a programming-by-example system for the 

HyperCard environment (Cypher 1991). It monitors the user's activities and when 

it detects an iterative pattern, it writes a program to complete the iteration. When 

Eager detects a repetitive activity, it highlights menus and objects on the screen to 

indicate what it expects the user to do next. When the user has developed confidence 

and trust in Eager's suggestions, he/she can instruct Eager to complete the tasks for 
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him/her. Mondrian, an object-oriented graphical editor that can learn new graphical 

procedures, is another system utilizing programming by example (Lieberman 1994). 

A user demonstrates a sequence of graphical editing commands on a concrete exam- 

ple to illustrate how the new procedure should work. An interface agent records the 

steps of the procedure in a symbolic form, using machine learning techniques, track- 

ing relationships between graphical objects and dependencies among the interface 

operations. The agent generalizes a program that can then be used on "analogous" 

examples. The generalization heuristics set it apart from conventional macros that 

can only repeat an exact sequence of steps. The system represents all operations 

using pictorial "storyboards" of examples. 

2.2   Agent Development Environments 

The need for development environment tools to aid designers in the specifi- 

cation and design of agent-based systems is critical. Agent development tools can 

ease the integration of interface agents into existing environments by supporting 

the unique requirements of interface agents (e.g., the need for user modeling) and 

ensuring compliance with existing business practices and user interface standards. 

However, agent development environments are still relatively immature. One prob- 

lem lies in the fact that a methodology for domain analysis from the adaptive sys- 

tems' perspective remains largely a field in its infancy (Benyon and Murray 1993). 

Furthermore, Sanchez, Azevedo, and Leggett (1995) state "much work is needed to 

identify an orthogonal set of primitives that would make agent development easier." 

Additionally, the authors note adaptivity with respects to environmental changes (to 

include users and their preferences) is a key element that must be addressed. Their 

project, PARAgent, is investigating these issues, but to date, has not proposed any 

solutions. Martin, Cheyer, and Lee (1996) enumerate five requirements they feel 

agent development tools must address. They include: 
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1. Supporting Conformance — Interoperability is crucial for multi-agent systems. 

Agents must be designed to interact correctly with other agents. This includes 

adherence to a communication protocol as well as an agent's "advertised" ca- 

pabilities. 

2. Supporting Heterogeneity — A tool must support a variety of implementa- 

tion languages, executing platforms, and the mixture between newly developed 

agents with those adapted from legacy code or information sources. 

3. Construction of Agent Communities — The tool must be able to identify sets 

of agents that can work together to perform a task. The tool should support 

the ability to determine an agent's capabilities and use (or reuse) them as basic 

building blocks of a system. 

4. Running and Debugging Systems — The tool must also support simulation of 

system execution. This requirement derives from that fact that many agent- 

based systems use distributed agents, performing tasks on different machines. 

The ability to simulate their actions can allow designers to debug agent "be- 

haviors" . 

5. Facilitating Use of Support Agents — The too, should allow for the customiza- 

tion of specialized agents (e.g., speech recognition or natural language under- 

standing agents) for the system. 

It is important to note that the authors' research concentrates on multi-agent systems 

and not system incorporating interface agents. Therefore, agent development tools 

meeting their requirements are deficient in several key interface agent requirements, 

including environment specification, adaptivity mechanisms, and knowledge base 

and reasoning mechanisms. These deficiencies are discussed in detail in Chapter VI. 

Metral (1993) defines eight issues to consider when designing interface agents. 

The issues are given as follows: 

Binding — a means for applications to locate and use agents; 
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Situation Specification — a means for applications to provide the agent with 

sufficient state information to make predictions; 

Inter-application Object Reference — allowing applications to create objects 

in the agent's world; 

Dynamic Field Negotiation — a means to extend situation specification at 

run-time; 

Action Specification — a means for the agent to specify which action the appli- 

cation is to execute and on what objects it is to be executed; 

Situation-Action Matching — matching user or agent predicted actions to un- 

resolved situations (s); 

User Feedback — a specification detailing how to provide real-time feedback to 

the user about status of the agent, to include explanations of actions. 

This section discusses only development environments. There are other 

methodologies for developing agents. For example, there exists a number of agent 

programming languages (e.g., AOP (Shoham 1993)) and agent communication lan- 

guages for developing agents (e.g., COOL (Barbuceanu and Fox 1996b), KIF (Gene- 

sereth and Fikes 1997), KQML (Mayfield, Labrou, and Finin 1996), D'Agent (for- 

merly known as Agent Tel) (Gray 1995a; Gray 1995b; Gray et al. 1997)). Sev- 

eral agent frameworks and tools have used Java (Sun Microsystems 1998) to im^ 

plement mobile agents system, including IBM Aglets (IBM Corp. 1998a), Concor- 

dia (Mitsubishi Electric Information Technology Center America 1997; Concordia 

Home Page 1998), JAFMAS (Chauhan and Baker 1998), JATLite (Stanford Uni- 

versity Center for Design Research 1998), Odyssey (General Magic 1998), and Voy- 

ager (ObjectSpace, Inc. 1998). These Java-based tools focus mainly on building 

secure network-based applications that use mobile agents to search for, access, and 

manage corporate data and other information. They provide an application pro- 

gramming interface (API) to Java classes and/or agent managers (e.g., agent name 
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servers). However, the development environment tools presented below envelop and 

subsume many of these other methodologies and therefore, this section concentrates 

on the development environments alone, mentioning the subsumed methodologies as 

appropriate. As an analogy, we are not interested in C++ libraries, but in devel- 

opment environments that use C++ and provide tools to use it (e.g., Microsoft's 

Visual C++). Furthermore, the examples concentrate on those environments suited 

for interface agents. 

In the following subsections, the most promising agent development environ- 

ments for human-agent interaction are discussed in detail. As will be discussed 

later, the agent development environment problem is still an active research area. 

Several of the discussed environments provide a visual development environment, 

with associated methods for specifying agent "behaviors" via an agent communica- 

tion language (Cohen et al. 1994; Martin et al. 1996; Barbuceanu and Fox 1996a; 

Chauhan and Baker 1998; Coen 1994; IBM 1997; Reticular Systems 1998). Most 

of the projects (commercial and research) provide a simple syntactic check on the 

agent's specification. 

2.2.1 Agent Building Environment. IBM's Agent Building Environment 

(ABE) is a software developer's toolkit that eases integration of agents into legacy 

software (IBM 1997). IBM's toolkit provides sensing "adapters" and simple if-then 

rules to control the overall actions of the agent. Agents perform their task(s) if the 

antecedent of their "activation" rule is satisfied. The knowledge base is stored in a 

library for use by all agents. 

2.2.2 Agent Building Shell. Barbuceanu and Fox (1996a) address issues 

related to actual programming constructs for internal representation and reasoning 

of agents and the development of tools to support how an agent represents its "view" 

of the world, to include updating this representation based on interaction within the 

environment.  The Agent Building Shell (ABS) (Barbuceanu and Fox 1996a) con- 
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tribution to the field of agent development environments is the attention given to 

an agent's internal knowledge representation and reasoning about the environment. 

The authors use rule-based descriptions, called conversation plans, of agent actions 

in a given situation. A conversation plan specifies the available conversation rules, 

their control mechanism and the local data-base that maintains the current state 

of the conversation. Conversations can be represented graphically with finite state 

automata. Error recovery rules can be specified to handle incompatibilities between 

the current state and incoming messages and are invoked when a conversation rule 

cannot handle the current situation. Rules are specified with a coordination lan- 

guage. The authors assume a deterministic environment. For their environment, 

this assumption is reasonable. However, for interface agent development, where the 

domain (including the user's behavior within the domain) is not deterministic, de- 

velopers must chose knowledge representations capable of representing uncertainty. 

ABS rules must also be specified by the user. 

2.2.3 AgentBuilder. AgentBuilder is a commercial integrated agent devel- 

opment tool suite (Reticular Systems 1998). The suite has two main components, 

the Toolkit and the Run-Time System. The AgentBuilder Toolkit includes tools 

for managing the agent-based software development process (Project Control tools), 

analyzing the target system and agent domain (Ontology Manager), designing and 

developing networks of communicating agents (Agency Manager), defining behaviors 

of individual agents (Agent Manager) to include learning and planning capabilities, 

and debugging and testing software (Agent Debugger). The Run-Time System in- 

cludes an agent engine that provides an environment for execution of the developed 

agent software. Both the Toolkit and Run-Time System are implemented in Java. 

AgentBuilder utilizes KQML performatives as the agent communication language. 

The standard set of KQML performatives can be extended with AgentBuilder. 
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2.24 Open Agent Architecture. The goal of the Open Agent Architec- 

ture project (Cohen et al. 1994) is to develop an open (e.g., extensible) agent ar- 

chitecture and accompanying user interface for networked desktop and hand-held 

machines. This system supports multiple agents for distribution of users' tasks and 

inter-operability between application subsystems. Martin, Cheyer, and Lee (1996) 

describe the Agent Development Tools (ADT) that allow users to generate code 

"stubs" for several popular programming languages. Their system includes two 

other tools — the Linguistic Expertise Acquisition Program (LEAP), for interfacing 

a new agent with existing linguistic support agents such as natural language parsers 

and speech recognition systems, and PROJECT, for creating and maintaining repos- 

itories of reusable agents. 

The Open Agent Architecture's Agent Development Tools allow designers to 

specifying the agents' interfaces in an extension of Prolog. Agents define their ca- 

pabilities (called solvables) and inform a facilitator agent of those capabilities. The 

facilitator is responsible for delegating tasks based on the capabilities. The use of a 

Prolog-like agent communication language allows the facilitator to reason over the 

capabilities of the agents, i.e., determine if its invocation conditions are true and 

what the needed parameters for invocation are. This reasoning is only about the 

agent's explicitly defined interface, and does not consider its internal capabilities 

unless these internal capabilities are explicitly defined as an external capability. 

2.2.5 SodaBot. The philosophy behind the SodaBot research project (Coen 

1994) is that software agents should be written using a vocabulary not provided by 

traditional programming languages — it should be possible to create agents solely 

by specifying their abstract behavior. SodaBot is a general-purpose software agent 

user-environment and construction system. Its primary component is the basic soft- 

ware agent — a computational framework for building agents which is essentially 

an agent operating system. The SodaBot project also presents a new language for 

programming the basic software agent whose primitives are designed around human- 
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level descriptions of agent activity. Via this programming language, users can easily 

implement a wide-range of typical software agent applications, e.g., personal on-line 

assistants and meeting scheduling agents. 

SodaBot provides the following tools: 

• A universal computational framework — the Basic Software Agent — for cre- 

ating and using agent applications; 

• A very high level agent programming language — SodaBotL - that provides 

the right level of abstraction to allow simple construction of complex agent 

applications. SodaBotL is used to program the basic software agent; 

• A graphical user-interface; 

• Automatic distribution of software agents across the Internet. 

SodaBot has recently been replaced by Metaglue (Michael H. Coen (mh- 

coen@ai.mit.edu) 1998). Details on this new architecture are not yet published. 

2.3   User Modeling 

User modeling, as a research discipline, emerged in the 1980s, from research 

being done in the artificial intelligence, human-computer interaction, psychology, 

education, and other research fields. In the previous sections, we concentrated on ttie 

first two research fields — HCI and AI — discussing their impact on the development 

of interface agents and their strengths and weaknesses. In this section, we discuss how 

the field of user modeling has brought the HCI and AI research communities together 

for the purpose of representing users' knowledge and interaction within a system and 

a discussion on user intent and its applicability to user modeling. Several of the ideas 

presented in this section, as well as the general flow of the presentation, follow Loren 

Terveen's article (Terveen 1995) "Overview of Human-Computer Collaboration." 
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2.3.1 User Modeling Historical Development. The AI community is con- 

cerned with the internal knowledge representation of interface agents versus the HCI 

community's concern with representation of the agent to the user. The field of 

user modeling is perhaps a good marriage between artificial intelligence and human- 

computer interaction. User modeling is concerned with how to represent the user's 

knowledge and interaction within a system to adapt those systems to the needs of 

users. Benyon and Murray (1993) state that user models are one of three models3 all 

adaptive systems must possess. The main purpose of user modeling is to determine 

what the user intends to do within a system's environment for the purpose of assist- 

ing the user. Ntuen (1997) defines human (user) intent as "mental states which drive 

actions." As previously stated, the term "user intent" as used in this dissertation is 

used to denote the actions a user intends to perform in pursuit of his/her goal. 

The infusion of ideas from many disparate research fields has allowed user 

modeling researchers to benefit from the important contributions of each of the 

separate contributing research fields. For example, the user modeling community 

has been able to reap the benefits provided by artificial intelligence researchers by 

various knowledge representations developed by AI researchers. The methods used 

include logic-based techniques (Pohl and Höhle 1997; Giangrandi and Tasso 1997), 

abductive reasoning-based techniques (Csinger and Poole 1996; Csinger et al. 1994), 

machine learning techniques (Chiu et al. 1997; Doux et al. 1997; Paranagama 

et al. 1997; Gori et al. 1997; Ambrosini et al. 1997), Bayesian methods (Conati 

et al. 1997; Brown et al. 1998; Harrington and Brown 1997; Horvitz et al. 1998; 

Albrecht et al. 1997; Noh and Gmytrasiewicz 1997; Corbett and Bhatnagar 1997), 

and neural networks (Paranagama et al. 1997; Gori et al. 1997; Ambrosini et al. 

1997). The human-computer interaction research impact on user modeling can be 

seen in the use of user models to customize presentation of information (Gutkauf 

3Benyon and Murray include the user model, the domain model (a model of the system), and 
an interaction model (a model of the user-system interaction). 
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et al. 1997; Hirst et al. 1997; Kalyuga et al. 1997), to provide feedback to users 

about their knowledge in a domain (Bull 1997), and to help users locate useful 

information (Linden et al. 1997; Maglio and Barrett 1997; Akoulchina and Ganascia 

1997). Additionally, user models have taken into account various human factors, 

such as a user's psychological ability, working memory, task load or cognitive load, 

to adapt a user interface and/or the information presented to the user (Mulgund and 

Zacharias 1996; Schäfer and Weyrath 1997; Stefanuk 1997; Gavrilova and Voinov 

1997; Banks, Stytz, Santos Jr., and Brown 1997; Brown, Santos Jr., and Banks 

1998b; Keates and Robinson 1997) The use of user models has been shown to increase 

effectiveness and/or usability of systems implementing the various techniques from 

the field of user modeling (Jameson, Paris, and Tasso 1997). 

Vassileva (1997) believes researchers need to start using lessons learned from 

user modeling to impact the way they view interactive human-computer environ- 

ments. She discusses viewing these environments along three orthogonal dimensions: 

elements — the goals, plans, resources, and actions composing the atomic entities an 

agent (human or otherwise) is concerned with; processes — the types of processing 

(e.g., reaction, deciding, learning) that takes place in an agent; and relationships — 

the way agents interact with one another. Her approach makes explicit the reason- 

ing about the purpose of adaptations, treats human and computer agents the same 

in the environment, takes into account user motivation, emotions, and moods, and. 

presents a unified model of collaborative, cooperative, and adverse behavior. The 

research presented in this dissertation addresses many of her concerns. 

2.3.2 Elicitation of User Models. Elicitation of user models is a knowledge 

acquisition process. It is well-known in the artificial intelligence research community 

that knowledge acquisition is the bottle-neck of intelligent system design. However, 

unlike knowledge acquired for an AI system such as expert systems, the "life" of a 

user model may be short-lived. Some user models are only useful for the duration 

of a problem solving "exercise" (e.g., student modeling and/or decision support user 
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models (Conati et al. 1997)). The purpose of the user modeling component in an 

intelligent system has a great affect on the elicitation techniques used to construct 

the user model. 

Knowledge in a user model may be acquired either implicitly via inferences 

made about a user, or explicitly via a collaborative process with the user, or a com- 

bination of both. Both acquisition approaches may be done before using the system, 

"on-line" while using the system, or "off-line" after using the system. Determining 

when and how to elicit the user model knowledge is a domain and application de- 

pendent decision. For example, an application that will be used by a small group 

of users with well-defined input and output (e.g., accounting applications) may use 

a user model declaratively defined during the design of the application. Knowledge 

could be acquired using standard knowledge elicitation techniques (Cooke 1994). On 

the other end of the spectrum, an application used by a diverse group of users (e.g., 

web based applications, word processors, decision support systems) with ill-defined 

and/or dynamic input and output must be capable of adapting to the needs of the 

user and the task at hand. Therefore, the user modeling component in these appli- 

cations must be dynamic, adapting as the user interacts with the application. The 

next section discusses several different machine learning techniques with respect to 

their usefulness in various domains. 

2.3.2.1 Machine Learning Techniques for Elicitation. Horvitz et al. 

(1998) explains how detailed (and time consuming) user studies can be used to 

better understand the needs and behavior of users as they encounter problems using 

software applications. This understanding can then be translated into knowledge for 

use in a user model. Unfortunately, not all user model designers have the resources 

to be able to elicit user models by watching users perform their work. Machine 

learning techniques are the most common and widely used methods of eliciting user 

models implicitly from users. The main reason for the popularity of machine learning 

techniques for user model elicitation is the fact that the user model may be elicited 
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incrementally, typically without user intervention by watching users performing their 

tasks. Therefore, machine learning techniques attempt to avoid the bottleneck of 

knowledge acquisition for user models. 

Perhaps one of the most popular heuristics for elicitation is statistical corre- 

lation. That is, actions a user performs more frequently, given a "situation," are 

good candidates to try again given the same situation. Due to its popularity in the 

research, the next several paragraphs discuss several key pieces of research related 

to statistical correlation. 

Maes uses memory-based reasoning (Stanfill and Waltz 1986) to learn situation- 

action pairs in an electronic mail application, meeting scheduler, and Web news 

reader domain (Maes 1994a). Memory-based reasoning is a frequency-based ma- 

chine learning technique. Situations are composed of vectors of features relevant 

to the environment the system is situated within. For the e-mail application, this 

might include the sender and recipient of a message, "Subject:" line keywords, the 

message length, the message urgency, etc. The relevant features to be included in 

a situation are typically determined during the system design phase. As the user 

interacts with the application, situations (defined by the features) and the actions 

taken by the user for a given situation are recorded. An interface agent uses the 

raw situation-action pair data to attempt to offer assistance to the user based on 

a closest match to previous situations. The frequency of the situation-action pairs 

determines their applicability. The statistical correlations are updated off-line. Maes 

uses two thresholds to determine when the statistical correlation is "strong" enough 

to warrant interface agent action on behalf of the user. 

Bauer investigates the acquisition of user preferences for plan recognition, in a 

Web news reader domain (Bauer 1996). He uses an off-line ID3 decision tree induc- 

tive learning algorithm (Quinlan 1986) to learn classes of situations based on user 

actions. Bauer states his approach is better than the approach used by Maes. In par- 

ticular, memory-based techniques maintain only the "raw data" in a situation-action 
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database, while inductive techniques attempt to draw higher level abstractions from 

the situations. Additionally, situation-action pairs are restricted to one-step predic- 

tions of single user actions, preventing the direct application of situation-action pairs 

for plan recognition, where the evidence has accumulated over several observation 

steps. 

Several other situation-action pair deficiencies exist. First, determining the 

relevant features to model the situations is critical. Within a restricted domain such 

as news readers, this is a tractable problem. However, for many domains, this re- 

striction makes the situation-action pair technique inadequate. This problem is not 

unique to situation-action pairs4. Furthermore, to match an action to a situation, 

the situation must be fully specified. In memory-based reasoning, each feature in 

the situation vector is relevant by default. User model designers must be able to 

specify the situation unambiguously. Due to inherent uncertainty in many environ- 

ments, due to faulty sensors, unobservable factors, etc., designers may not be able to 

specify a situation vector unambiguously. Second, the user must perform a number 

of actions prior to making any decisions. This problem can be overcome by using 

additional elicitation techniques such as user profiles or stereotypes providing a pri- 

ori knowledge about a user. Third, most current situation-action pair-based user 

models ignore the utility of offering assistance to a user, assuming frequency is the 

key determining factor of user behavior. Systems must not only be capable of deter- 

mining the frequency of an action given a situation, but the relevancy based on many 

factors, to include the goals the user is pursuing, cognitive factors such as spatial and 

temporal ability, skills proficiency, etc. "Situations" typically do not capture such 

factors. Fourth, situation-action pairs ignore the correlation between actions (i.e., 

behaviors) and the goals being pursued. Situations are matched with a single action 

to perform, given the situation. However, in many situations, a user may perform a 

4Bauer states "the question of how to come up with an appropriate feature set for the description 
of situations can be crucial." 
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series of actions to accomplish some higher level goal. Simple situation-action pairs 

cannot model situation-goal-actions. Lastly, while most user models using situation- 

action pairs allow for machine learning techniques to extend the behavioral model 

of users by adding new pairs and/or updating the statistical frequencies, they fail to 

capture the inherent uncertainty and dynamics of predicting the user's intent. 

2.3.3 Specification and Design of User Models. Determining how to spec- 

ify and design a user model to accurately model a user is difficult at best. The 

work done in artificial intelligence knowledge representation research is of particu- 

lar use here. Many research interfaces use rule-based intelligence (Thomas 1993). 

Rule-based representations, like those used in most intelligent user interfaces, fail 

in two key areas: representing uncertainty and dynamic user modeling. The use of 

"probability modules" (Winston 1984) is an ad hoc approach to determining answer 

reliability, i.e., uncertainty. Furthermore, the addition and deletion of rules to dy- 

namically model a user is ad hoc. Therefore, knowledge representations that can 

dynamically capture and model uncertainty can improve the user modeling in an 

intelligent user interface. In recent years, numerical uncertainty techniques from the 

AI community have been used in a number of systems to capture the uncertainty 

inherent in modeling users (Jameson 1996). 

In general, two main schools of thought exist on the design of user models. 

The first uses "hand-coded" user models. That is, the system designer determines 

how best to model the users a priori. (See Jameson (1996) and Maes (1994b) for ex- 

amples). Hand-coded user models are typically static. Once they are designed, they 

will not change structure. The second method uses "machine-coded" user models. 

That is, a user model is constructed by the system as it "learns" more about the 

user. These models are dynamic (i.e., the structure and/or "contents" of the user 

model changes over time). (See Jameson (1996) and Harrington and Brown (1997) 

for examples.) Both methods have advantages and disadvantages and the particular 

domain will determine which method best meets the needs of the user model's con- 
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struction. It should be obvious that the elicitation method(s) used may be integrally- 

tied to the way system designers specify and design the user model. This disserta- 

tion is concerned with other issues that impact both hand and machine-coded user 

models discussed below. 

2.3.3.1 Relevancy and User Intent. As mentioned previously, to ac- 

curately predict user intent, an interface agent must have an accurate cognitive model 

(i.e., user model). Modeling every possible naturalistic property in the user's world 

fortunately does not lead to the most accurate model (DeWitt 1995). If this were 

not the case, there would be little hope in using numerical uncertainty management 

techniques such as Bayesian networks due to the computational inefficiency of large 

networks (Cooper 1990). 

DeWitt notes that not all naturalistic (i.e., observable) properties play an inter- 

esting role in a user's causal model (DeWitt 1995). That is, only certain observable 

actions and information in a user's "world" will have relevance to that user. DeWitt 

uses the term causally efficacious to describe naturalistic properties that "play any 

interesting causal role in cognitive functions." He argues that not everything ob- 

servable is of interest when we make decisions. DeWitt's philosophical argument has 

direct analogy in user models. A user model must not include every possible piece of 

information about "the world." To use DeWitt's example, while the manufacturer 

of a stereo, the amount of dust on top of the stereo, and the weight of the unit are 

all observable properties, none of this evidence would likely have any bearing on the 

reasoning as to why the stereo does not work. To include such information in a user 

model needlessly complicates the model, not only semantically, but computationally. 

To take this analogy one step further, the less causally efficacious a property is to 

another, the more likely it can be ignored. Therefore, to effectively and efficiently 

capture user intent, the user model should not attempt to model every possible 

action the user may exhibit, but only those that are relevant. 
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Harrington and Brown (1997) use the term relevancy set to describe those prop- 

erties included in their user model, represented by an interface learning network. The 

interface learning network is a Bayesian network supplemented by information sup- 

port nodes storing the statistical frequency of user actions. For hand-coded models, 

the relevancy set will not change. For machine-coded models, the relevancy set may 

change with use. A relevancy neighborhood are those properties that are immediately 

causally efficacious to the decision under consideration. As an example from Har- 

rington and Brown, a user model may contain the possible communication modes 

and tools a user may use in a system, given the user's class and individual prefer- 

ences learned by the user's interface learning network, as well as several knowledge 

bases used previously. These nodes in the network are considered the relevancy set. 

When the interface learning agent wants to predict if a particular knowledge base 

will be needed by the user, the other knowledge bases are in the relevancy neighbor- 

hood. Therefore, the relevancy presents a computationally efficient and semantically 

meaningful view of the user's relevancy set at any given time. The concept of a rele- 

vancy set is a good tradeoff between computational complexity and representational 

exactness, while maintaining full semantics. 

2.3.3.2 Specification and Design Examples. Various types of models 

of the user can be elicited. Stereotypes (Rich 1983) represent "typical" users, express- 

ing various traits, characteristics, and attributes that are common among a group of 

users. Users classify themselves as belonging to a particular stereotype. User profiles 

are used to represent background, interests, and general, typically static, knowledge 

about a specific user. User profiles may be elicited from users by, for example, stan- 

dardized tests, surveys, and/or assessments. These elicitation techniques are used 

to construct the user profile. 

User modeling researchers, as well as other research disciplines, have used 

stereotypes and user profiles for various purposes (Kay 1994). User modeling exam- 

ples include using stereotypes to filter World Wide Web documents (HTML/text), 
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basing a user's inferred interests on user adapted stereotypes acquired via ex- 

perts (Ambrosini, Cirillo, and Micarelli 1997), to derive initial proficiency estimates 

on a user's level of advancement for use in computer-assisted language learning (Mur- 

phy and McTear 1997), and adapting Web-based hyper-media based on stereotypical 

users' abilities (e.g., disabled and the elderly) (Fink, Kobsa, and Nill 1997). 

As an extended example, Csinger and Poole (1996), as well as Csinger, Booth, 

and Poole (1994), use a simple form-filling operation to elicit interest metrics for 

"intent-based" authoring. Simple Horn-clause dialect (Poole 1993) is used to rep- 

resent the contents of the knowledge-bases that compose their user model. Use 

of Horn-clauses allows inferencing to be performed using a best-first probabilistic 

Horn-clause assumption based system. The user model is represented by a set of 

recognition assumptions that satisfy the observations of the user's actions. The ab- 

ductive reasoning engine is used not only to determine the most plausible user model, 

but the best (i.e., least costly) presentation of the information in the system. 

As mentioned previously, modeling users involves a great deal of uncertainty. 

Using knowledge representations capable of dealing with this uncertainty in a sound, 

mathematical way is desirable. Jameson (1996) provides an excellent overview of the 

use of numerical uncertainty techniques in systems utilizing user modeling systems. 

In particular, he focuses on Bayesian networks (Pearl 1988), Dempster-Shafer The- 

ory, and fuzzy logic knowledge representations. In addition to categorizing each 

system by its knowledge representation, he also categorizes each system by its input 

(termed observable states and events), long- and short-term cognitive states, and 

domain. Furthermore, he critically discusses the advantages and disadvantages of 

each knowledge representation from the viewpoints of knowledge engineering require- 

ments, programming effort, empirical model adjustment, computational complexity, 

"human-likeness," justifiability, and explainability. 

One of the most widely used applications employing an uncertainty knowledge 

representation user model is the Microsoft Office '97 applications.   Horvitz et al. 
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(1998) present their work on the Lumiere project. The Lumiere system utilizes a 

Bayesian network user model to capture the needs and goals of users within the do- 

main of the Microsoft Excel spreadsheet application. The Bayesian network is elicited 

from application designer experts who had the advantage of performing "Wizard of 

Oz" studies5 on real world users. To aid designers, a Lumiere Events Language was 

developed that allowed atomic application events to be directly modeled, as well as 

streams of atomic events to be formed into Boolean and set-theoretic combinations of 

low-level events. Furthermore, the language allows designers to compose new mod- 

eled events from previously defined modeled events and atomic events. The language 

allowed the researchers to build and modify transformation functions that would be 

compiled as run-time filters for modeled events. Horvitz et al. discuss the framing, 

constructing, and assessing of Bayesian user models. The "Wizard of Oz" studies 

revealed classes of evidential distinctions, providing observational clues valuable to 

making inferences about a user's problems and the user's need for assistance. The 

identified classes are as follows: 

• Search — Repetitive, scanning patterns associated with attempts to search 

for or access an item or functionality. 

• Focus of attention — Selection and/or dwelling on artifacts in the interface. 

• Introspection — A sudden pause after a period of activity, or significant 

slowing of activity. 

• Undesired effects — Attempts to return to a prior state. This includes 

undoing actions, or closing a dialog box shortly after it is opened without 

invocating an offered operation. 

• Inefficient command sequences — Performing operations that could be 

done more simply or efficiently. 

5 "Wizard of Oz" studies involve users interacting with applications (e.g., Microsoft's Excel) 
while a human expert provides application assistance to the users. The users are unaware the 
assistance is being provided by human experts. The effect is a person "behind the curtain." 
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• Domain-specific syntactic and semantic content — Consideration of spe- 

cial distinctions in content or structure of documents and how a user interacts 

with these features. 

Structuring effective Bayesian user models relies on the ability to define ap- 

propriate variables and states of variables in the Bayesian network and to assess 

probabilities over these variables. The structure of the Bayesian network must also 

take into account temporal reasoning about a user's actions. Horvitz et al. in- 

vestigated the use of dynamic Bayesian networks and single-stage formulations of 

the temporal variables. Dynamic Bayesian networks consider dependencies between 

variables within as well as between time slices (Nicholson and Brady 1994; Albrecht, 

Zukerman, Nicholson, and Bud 1997; Schäfer and Weyrath 1997). Single-stage for- 

mulations determine the likelihood of alternative goals at the present moment and 

embed considerations of time within the definitions of observational variables (e.g., 

user performed action x less than y seconds ago) or introduce time-dependent con- 

ditional probabilities. 

Karagiannidis, Koumpis, and Stephanidis (1996) present an approach to deter- 

mine, within the domain of intelligent multimedia presentation systems (IMMPS), 

what, when, why, and how, to adapt the system's presentation. Central to their 

approach is an explicit decomposition of the adaptation process into adaptivity con- 

stituents (the "what"), determinants (the "when"), goals (the "why"), and rules 

(the "how"). Their approach does not address agent-based environments, although 

the authors are outlining a project concerning the implementation of their approach 

within an agent-based environment6. 

The authors' work has several weaknesses. Karagiannidis et al. have no way 

of determining whether their method of adaptation, the "how," is feasible within 

their approach, nor its impact. The authors' approach is to rely on the application 

6Personal communication with Constantine Stephanidis. 
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to determine whether the adaptation method is feasible7. This places an unneces- 

sary burden on the application designer to account for this. Furthermore, it makes 

integration of agents into legacy software nearly impossible. From a computational 

stand-point, certain adaptations could be abandoned given the evidence that the ap- 

proach would not be feasible. All goals within a system deal with adaptation of the 

presentation. These are not necessarily explicit user goals. Therefore, the assistance 

offered may not help the user achieve a goal they are pursuing directly, but may 

indirectly help them by presenting the information in the "best" (as determined by 

the designer) way. 

Yoshida (1997) uses a directed graph to represent the user's use of files and 

other system resources in the UNIX operating system8. The author states that user 

models acquired by automating a user's sequence of commands do not always typify 

the user's behavior. Yoshida's work investigates the importance of data dependency 

between commands the user invokes. Experiments show that taking into account 

data dependency yields a better user model and improves command selection accu- 

racy. Yoshida's framework involves using the directed graph to model relationships 

between the commands a user invokes and the files needed by those commands. The 

graph representation is particularly well-suited to multi-tasking environments such 

as UNIX. As the user interacts with the operating system, the commands and in- 

put/output access is "recorded" in the directed graph. This graph is then analyzed- 

via graph-based induction. Typical subgraphs are extracted from the input graph 

so that the subgraphs represent typical events in the system. These extracted sub- 

graphs are the user models and are used to pre-fetch needed files based on prediction 

of future commands of the user. 

Ntuen (1997) uses the concepts of finite-state grammars to generate command 

languages. The author states that command languages have some characteristics of 

7Personal communication with Constantine Stephanidis. 
8For a more detailed presentation, see Yoshida and Motoda (1997). 
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certain finite-state grammars implying command languages can be formulated and 

represented by production rules generated by a finite state grammar. The author also 

states that communicated intents, driven by performing activities, have properties 

similar to command languages. The usefulness of this representation comes in the 

prediction and adaptation to users by representing their intents in a knowledge base 

and inferencing over this knowledge base to determine what the user is attempting 

to do. The knowledge representation works well in application domains where there 

is little ambiguity concerning what a particular activity might convey in the way of 

intent; i.e., domains where tasks are well defined. 

Stary (1997) discusses how designers can specify and design intelligent user in- 

terfaces through the identification of human task and work flows. Stary presents the 

TADEUS (Task Analysis, Design, End-User Systems) approach, a task-oriented sys- 

tem development approach. His approach deals with designing intelligence interfaces 

by addressing what a user needs for task accomplishment. This is in contrast with 

using machine learning techniques to elicit "intelligence" although his approach does 

not preclude using machine learning techniques. Using the TADEUS approach, work 

flows are migrated into the user-interface design representations. Business goals and 

rules and their relationships to tasks and people involved can be integrated into the 

user interface design. Meaningful sequential activities for task accomplishment are 

determined. Profiles of various users of the system, and their functional roles to the 

task and work flows can be generated. Flow and control of data can be made trans- 

parent and interface designers can provide notation that allows static and dynamic 

specification and adaptation of the work flow models. The TADEUS approach allows 

consistent and context-sensitive user interface development to be supported in the 

software development process and eases the use of artifacts of previous development. 

2.3.4 User Model Verification and Validation. Once the user model has 

been elicited, specified, and finally designed, determining if the user model is an 

accurate representation of the user's actual interaction with the system and meets 
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all designer requirements is paramount to the functionality of the user model in 

a system. The accuracy of the user model must be measured if we are to deter- 

mine how closely the user model matches the real (exhibited) behavior of the user. 

Since the user's behavior may change over time, deviating from the the originally 

elicited, specified, and designed user model (assuming we accurately captured the 

user's model initially), verification and validation techniques must be used over time 

to make sure the user model currently reflects the user's behavior. 

Note that user model verification and validation is different than the use of 

machine-learning techniques to adapt the user model. User model validation is 

concerned with determining if we built the right user model, while verification is 

concerned with determining if we built the user model correctly based on the spec- 

ification. Most machine-learning techniques used in user model adaptation fail to 

measure how closely the user model reflects the user's behavior. Typically, usabil- 

ity studies are performed for this purpose. Users are asked a number of subjective 

questions concerning their likes and dislikes of the system, and from these questions, 

user model and/or system designers ascertain the validity of the user model. Most 

usability studies are done "off-line" and have no immediate bearing on the user 

model. Objective metrics are useful for dynamically modifying the user model to 

better model the user. Currently, this is an fertile area of research. 

How to change a user model is just as important, if not more so, than when to" 

change the model. Is it better to fail to recognize a user model is no longer adequate 

than to change a user model incorrectly? Both problems have the same effect — an 

incorrect user model. 

2.3.5 Utilization of User Models. In practice, user models used in "real" 

systems make several assumptions, as described by R. V. London9: 

9As cited by Järvnin (Järvnin 1993). 
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• Closed-world assumption — All relevant plans and actions are known either 

explicitly or by closure. 

• User's correctness — The user has a coherent, well-formed plan, with no 

fatal misconceptions. 

• Unified goal and plan — Typically, the user has a single top-level goal, with 

sub-goals in a proper hierarchy. If there are non-hierarchic goals, then they 

are either resolved into a unified plan or maintained as multiple plans that are 

nearly independent. Additionally, users have a somewhat persistent focus. 

• Co-operative user — The user is purposely giving information to help the 

user modeler, or the system can verify and adjust its conclusions by cooperative 

negotiations with the user. 

• No real-time requirements — The system is not required to respond within 

the time bounds of normal human communication. 

Pohl (1997) further discusses shortcomings of user models utilized in most 

systems: 

• Assumptions about interaction preferences or behavior patterns are missing. 

• Assumptions are acquired with specialized heuristics, drawing from isolated 

observations without regard to interaction context. 

• User behavior, preferences, and mental attitudes are subject to change, but 

not adequately modeled. 

• User models are constructed and exploited mostly within the limits of one 

application. However, it is beneficial to share information about users among 

several applications. 

2.3.6 Plan Recognition. Plan recognition is the task of ascribing intentions 

about plans to an agent (human or software), based on observation of the agent's 

actions.  There are three types of plan recognition: intended — the agent chooses 
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actions that make the plan recognition process easier; keyhole — the agent is unaware 

of or indifferent to the plan recognition process; and obstructed — the agent is aware 

of and actively obstructs the plan recognition process (Waern 1996). 

Several researchers have used plan recognition as a user modeling technique. 

Plan recognition has been used to predict actions in a virtual predator-prey environ- 

ment (Foner 1994) and to predict users' actions in games (Albrecht et al. 1997). Sev- 

eral authors have investigated the use of probabilistic approaches, including Bayesian 

networks (see Section 2.4) for plan recognition and generation. 

Kirman, Nicholson, Lejter, Dean, and Santos Jr. (1993) investigate the use of 

a Bayesian network of the "world" — in the authors' case, a simple room with a 

mobile robot and a target to be found — and a utility measure on world states to 

generate plans (sequences of actions) with high expected utility. The number of plans 

investigated are restricted to those with high utility with respect to attaining a goal. 

In the authors' work, the goals are known with certainty and the plans to achieve 

the goals must be found. They show that by using decision-theoretic methods, they 

can drastically reduce the number of plans that must be investigated. 

Waern uses keyhole plan recognition to determine what a user is doing within 

a route guidance domain and Internet news reader (Waern 1996). She uses pre- 

compiled plans called recipes. Assistance is offered for attaining a goal based on the 

calculated probability the user is pursuing the goal. Her approach does not address 

the utility of offering assistance. She considers only the probability that offering to 

perform an action will help the user obtain a goal. Furthermore, her approach is not 

dynamic; that is, there is no adaptation of the pre-compiled plans. Lastly, there is 

no way to trace the user's execution of a plan nor offer explanations of assistance. 

ANDES is a system that performs long-term knowledge-assessment, plan recog- 

nition, and prediction of students' action during physics problem solving (Conati, 

Gertner, VanLehn, and Druzdzel 1997; Gertner, Conati, and VanLehn 1998). AN- 

DES uses Bayesian networks constructed dynamically from static knowledge bases 
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of specific physics problems as well as physics concepts, laws, formulas, etc. The plan 

recognition component is used to tailor support for the students when they reach 

impasses in their problem solving process. Their approach uses explicitly stated goal 

and problem solving strategy nodes to model the user's problem solving, but does 

not use a utility-based approach. The authors note they are researching methods to 

expand the fixed knowledge base used to construct the Bayesian networks; in par- 

ticular, they are adding knowledge to determine common "misconceptions" within 

the domain and changing the static parameters. 

The Pilot's Associate Program was a research effort using plan recognition 

within a real-time domain to determine goals from actions (Banks and Lizza 1991; 

Small 1995). The Pilot's Associate was a software agent providing assistance — in 

the form of wanted and needed information at the correct time — to a combat pilot. 

The Pilot's Associate pushed the envelope in knowledge representation and reasoning 

techniques. They used AND/OR plan-and-goal trees with an associated "dictionary 

form" for explanations of plans a user was pursuing, and offered assistance to help the 

pilot. The graph's hierarchical structure produces a common planning language for 

use among heterogeneous modules. One of the main problems with their approach 

was due to the technology available at the time for representing and reasoning about 

uncertainty. As a result, their approach did not account for the uncertainty nor 

utility in obtaining goals by performing actions. 

Jameson (1996) presents an overview of a casual planning model that can be 

summarized in terms of the following phases: 

1. A user observes aspects of the physical environment (e.g., stimuli). 

2. The user compares the observations with his/her goals, determining the extent 

to which her goals are fulfilled. 

3. The user selects a plan to address an unfulfilled goal. 

4. The user refines a plan, taking into account the current situation. 
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5. The user executes a sequence of actions. 

6. These actions have observable effects on the environment. 

Plan recognition is made difficult because many times users do not follow pre- 

planned goals. They perform some actions that can be ascribed to more than one 

plan, and may be pursuing several plans at once. Because of this, ascribing intentions 

to a user's actions by observing the actions to those actions can be next to impossible. 

One way of avoiding this is to observe only the most recent actions (Waern 1996; 

Foner 1994). A fading function is used to "forget" past actions. Not only does this 

have the advantage of focusing attention on the most recent actions making plan 

recognition in certain domains (e.g., web browsing) easier, but it has the side effect 

of reducing the complexity of reasoning over all the past actions to determine an 

agent's plan. Another way to handle this problem is to introduce uncertainty into 

the model. Jameson (1996) describes how the causal planning model can be used 

to construct Bayesian networks. The networks are constructed based on observable 

events within each phase of the model. 

24    Decision and Utility Theory 

The world we live in demands we make decisions about many things; from 

whether to get up in the morning to work, to what clothes to wear, to what to eat. 

Our decisions have consequences, some are more desirable than others. The prefer- 

ence of one consequence over another is based on personal preferences. Furthermore, 

certain consequences are more likely than others. Therefore, to make informed deci- 

sions, taking into account all preferences and factors affecting our decisions, we must 

assess the utility of all the outcomes of our decisions. Furthermore, we must know 

the chance of an outcome occurring given various background information we have. 
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The bodies of research known as Decision Theory and Utility Theory exists 

to assist decision makers, allowing them to make informed decisions. The Web 

Dictionary of Cybernetics and Systems10 defines decision theory as follows: 

Decision theory is a body of knowledge and related analytical techniques 
of different degrees of formality designed to help a decision maker choose 
among a set of alternatives in light of their possible consequences ... In 
a decision situation under certainty the decision maker's preferences are 
simulated by a single-attribute or multi-attribute value function that in- 
troduces ordering on the set of consequences and thus also ranks the 
alternatives ... The decision maker's preferences for the mutually exclu- 
sive consequences of an alternative are described by a utility function that 
permits calculation of the expect utility for each alternative. The alter- 
native with the highest expected utility is considered the most preferable 
... [the] approach is to reduce the uncertainty case to the case of risk by 
using subjective probabilities, based on expert assessments or on analysis 
of previous decisions made in similar circumstances. 

Given the above definition, utility theory's relationship to decision theory is 

to provide the semantics of and justification for determining the single-attribute or 

multi-attribute value function denoting a preference of one consequence of an alter- 

native over another consequence. A decision maker's preference for a consequence 

is determined by many factors: the alternative being considered, the biases and/or 

prejudices of the designer, psychological and sociological factors, engineering con- 

siderations, etc. Any or all of these attributes may impact the final decision. The 

likelihood (i.e., probability) of a particular consequence does not affect a decision 

maker's desire (i.e., utility) for a consequence. However, the likelihood of a con- 

sequence combined with the consequence's desirability affects the decision maker's 

expected utility of that consequence. The relationship between preference and prob- 

ability is succinctly stated by Pearl (1988, pg. 289). 

.. .judgments about the likelihood of events is [sic] quantified by probabil- 
ities, judgments about the desirability of action consequences are quan- 
tified by utilities. 

10See http://pespmcl.vub.ac.be/ASC/UTILITY.html 
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Rational decision makers adhere to the concept of the maximum-expected- 

utility (MEU) criterion. The MEU criterion states a decision maker.will choose 

the alternative that maximizes his/her expected utility. This section proceeds to 

give some background on the MEU criterion. Unfortunately, there is no standard- 

ized notation in decision theory for mathematically stating the foundations of the 

maximum-expected-utility criterion. However, the notation used throughout this 

research is internally consistent, understandable, and generally accepted within the 

uncertainty in artificial intelligence community. Where appropriate, alternative no- 

tation is also given to be inclusive of other research communities' notation. 

Let A be a non-empty, finite collection of alternatives. For each alternative, a G 

A, there will be a finite collection of consequences ac C C, where C is the collection 

of consequences. Let c G ac denote a consequence of alternative a. Consequence c 

is an n-dimensional vector of attribute values 

C= (Ci,...,Ci,...,Cn). (1) 

For every attribute d, define the function Q : A i-> 9£ mapping the alternative a to 

some consequence space such that Ci(a) = c*. Under uncertainty, the decision maker 

will not know which consequence will occur, but it is assumed he can determine the 

probability of the consequence occurring, given a probability distribution A, evidence 

E, and any background information £. E includes the alternative, a, as well as any 

other observations. £ includes a priori evidence such as previous decisions. Assuming 

A, E, and £ are given, let Pr(c|E,£) denote the probability of consequence c given 

evidence E and £n. Let u(-) be a positive real-valued utility function. Let u(c) 

denote the value of the utility function of consequence c.   We can now define an 

11 Strictly speaking, c, E, and £ are random variables. 
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expected utility function, EU (a)12, as follows: 

EU(a) = £A[u(c)} = £ Pr(c|E, flu(c), (2) 
cEac 

where the expected utility function is equivalent to the expectation operator £A 

taken with respect to probability distribution A. If Equation (2) is evaluated for all 

alternatives (also termed a lottery), the decision maker obtains a rank ordering of 

the expected utilities of the alternatives. Rationally, the decision maker chooses the 

alternative with the maximum (highest) expected utility. 

Given the discussion above, every preference pattern of one lottery over another 

can be encoded by specifying the utility measure of each individual consequence 

and deciding all preferences among the lotteries on the basis of the MEU criterion. 

Alternatively, if a decision maker rationally chooses the lottery with the highest 

expected utility, he/she is guaranteed the choice is consistent with his/her utility for 

that lottery, regardless of the utility assigned to the consequences. 

The utility function U(c) can take into account psychological factors, such as 

the decision maker's biases, prejudices, preferences, mental state, etc. as well as aver- 

sion to risk. Note that Equation (2) is expressed as a summation due to the assump- 

tion that each consequence is mutually exclusive of the others for a given alternative. 

This assumption is realistic in a large number of real world problems (Keeney and 

Raiffa 1993). As a result, the following basic axiom from probability theory is used 

Pr(ci V ... V cn) = Pr(ci) + ... + Pr(cn), (3) 

where Ci,..., cn are mutually exclusive, i.e., Ci A ... A cn = 0. 

The decision theory analysis paradigm can be decomposed into the following 

five-step analysis process (Keeney and Raiffa 1993): 

12The notation for the expected utility function is EU(-). EU(a) shall be used throughout this 
dissertation since the notation simplifies the presentation of the function. 
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1. Pre-analysis. A decision maker who is undecided about the course of action 

he/she should take in a particular problem identifies viable action alternatives. 

2. Structural Analysis. The decision maker structures the problem by deter- 

mining what choices can be made now, what choices can be deferred, what 

experiments can be performed, what information can be gathered, etc. These 

questions can be represented by a decision tree (Fig. 1). The decision tree 

contains nodes that are under the control of the decision maker termed deci- 

sion nodes (i.e., the square nodes) and nodes that are not under the decision 

maker's full control termed chance nodes (i.e., the circled nodes). 

3. Uncertainty Analysis. The decision maker assigns probabilities to all child 

branches of the chance nodes. These assignments can be made with any num- 

ber of techniques, including expert judgment, empirical data, and personal 

preferences (biases) of the decision maker. 

4. Utility or Value Analysis. The decision maker assigns utility values to the 

consequences associated with paths through the tree. Associated with each 

path are various economic and psychological costs and benefits that affect the 

decision maker and possibly others whom the decision maker considers part 

of the decision making problem. The utilities, therefore, represent a decision 

maker's preferences and are encoded as cardinal utility numbers. The utility 

numbers reflect both a ranking between different consequences and relative 

preferences for certain alternatives over the possible consequences. 

5. Optimization Analysis. The decision maker calculates his optimal strategy 

— the one that maximizes the decision maker's expected utility. The strategy 

determines what choice the decision maker should make at every decision node. 

2.4.I Assessing Multi-Attribute Utility Functions. Decision theory posits 

that using the concept of maximum expected utility, a rational decision maker will 

choose the optimal strategy (i.e., alternative) to maximize the expected utility. Most 
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Figure 1     A Decision Tree Showing Two Alternatives. 

decision makers do not know explicitly their utility function. Despite this fact, 

humans are capable of making decisions. Researchers have been concerned with 

the assessment of a decision maker's multi-attribute utility functions. However, the 

assessment of multi-attribute utility functions under uncertainty can be an arduous 

task. 

The maximum expected utility criterion (also called the principle of optimal- 

ity) allows one to compute the utility functions (also called the optimal decision 

rule) by backward induction of a decision tree representation of the decision space 

starting at a terminal leaf (i.e., consequence). Rust (1996) investigates empirically 

whether the main mathematical method for solving sequential decision problems un- 

der uncertainty, dynamic programming (Bellman 1957), provides a good model of 
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the way humans actually solve problems. Associated with dynamic programming 

is the concept of structural estimation. This "inverse stochastic control problem" 

utilizes empirical data of a decision maker's decision at some time t given the state 

of the world at time t to uncover the decision maker's utility function. The main 

problem with dynamic programming (and therefore structural estimation) is what 

Bellman (1957) calls "the curse of dimensionality." "The curse of dimensionality" 

simply states that the computational effort to compute the decision maker's utility 

function increases exponentially with regards to the number of states and decision 

variables as well as the number of time histories. 

One way to reduce the amount of computation is to consider problems where 

the decision maker's next decision is dependent only on the last time history (Rust 

1996). This myopic method is known as a (discrete-time) Markov decision process. 

Alternatively, some researchers take an expert systems approach to assessing the 

utility functions. For example, Horvitz and Barry (1995) elicit the utility functions 

from knowledge experts for decision-theoretic control of displays for a time-critical 

monitoring application at the NASA Mission Control Center. Horvitz and Rutledge 

(1991) studied the assessment and custom-tailoring of utility functions for time- 

dependent action. The authors state, 

Decision-theoretic methods have been considered inapplicable for general 
problem solving because they require agents to possess a utility function 
that provides a preference ordering over outcomes of action, and to have 
access to a probability distribution over outcomes associated with each 
decision. 

They overcome this problem within their domain, a system constructed to explore the 

ideal control of inference by reasoners with limited abilities, by using utility functions 

assessed by experts for prototypical situations and models of time-dependent utility. 

The prototypical utility functions are modified by applying a mathematical model. 

Some preliminary results for determining utility functions from users exist (Druzdzel 

and van der Gaag 1995; Ha and Haddawy 1997; Shoham 1997). 
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2.5   Bayesian Networks 

Bayesian networks are a probabilistic knowledge representation used to repre- 

sent uncertain information (Pearl 1988). The directed acyclic graph structure of the 

network contains representations of both the conditional dependencies and indepen- 

dencies between elements of the problem domain. The knowledge is represented by 

nodes called random variables (RVs) and arcs representing the (causal) relationships 

between variables. The strengths of the relationships are described using parameters 

encoded in conditional probability tables. 

One of the criticisms of Bayesian networks is how they are constructed. Con- 

struction of Bayesian networks usually proceeds in one of two ways: "hand-coded" 

or "machine-coded." "Hand-coded" means a Bayesian network is constructed by 

a knowledge engineer to capture the relevant random variables and their relations 

in the domain. The structure and parameters are encoded into a (typically) static 

Bayesian network. As with most other knowledge based systems, the knowledge 

acquisition process is the "bottleneck" of building a system around Bayesian net- 

works. "Machine-coded" Bayesian networks, on the other hand, are generated by 

using previously captured data or data acquired as users interact with a system 

and therefore attempt to avoid the knowledge acquisition bottleneck. This data 

can either be "raw" data or another knowledge representation that is then trans- 

formed into a Bayesian network. Of course, this method of construction assumes 

access to the data. In many instances raw data is not available. For data captured 

in another knowledge representation, the knowledge acquisition bottleneck problem 

merely shifts to the new representation. 

Whether knowledge engineers construct a Bayesian network a priori, using 

machine learning techniques, or a combination of the two, they must deal with the 

issue of causality. Pearl contends humans are good at specifying intuitive causal 

relationships between random variables (Pearl 1988). Jameson (1996, pp. 200-201) 

considers the direction of the causal relationships between general and specific abil- 
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ities. He notes that when a Bayesian network is constructed from general to more 

specific abilities, knowledge (i.e., evidence) about one specific ability typically prop- 

agates upward and then downward, increasing knowledge of more general abilities 

as well as other specific abilities. On the other hand, networks constructed from 

specific to general abilities typically only propagate knowledge downward, yielding 

no new knowledge about other specific abilities. Several other researchers have in- 

vestigated issues concerning the construction of Bayesian networks (e.g., (Henrion 

1989; Druzdzel and van der Gaag 1995; Pradhan et al. 1995)). 

While the Bayesian network representation can concisely represent large 

amounts of knowledge, it also creates difficulties in manipulating the networks. In 

spite of the independence explicitly encoded into the network, many inferencing 

methods must search through the entire combinatoric space of all possible instan- 

tiations to the nodes of the network. It has been shown that this is problem is 

non-polynomial NP-hard (Cooper 1990). 

Many methodologies for making Bayesian networks computationally feasible 

exist. The first is to approximate the inferencing scheme used to calculate updated 

beliefs in the network. Approximation methods for belief updating include stochastic 

search (Cousins 1991), junction trees (Lauritzen and Spiegelhalter 1988; Kjaerulff 

1995), simple Genetic Algorithms (GAs) (Michalewicz 1992) and incremental or 

asymptotic evaluation methods such as Local Partial Evaluation (Draper and Hanks 

1994).   The second method involves approximating the structure of the Bayesian 

network itself.   Methods for approximating the structure include removal of weak 

dependencies (Kjaerulff 1994) and removal of arcs (Sarkar and Murthy 1996). An- 

other method uses only the relevant portions of the network with relationship to 

the evidence and query nodes (Breese and Heckerman 1996).  Alternatively, goals, 

actions, pre- and post-conditions can be represented in a probabilistic knowledge 

base. Techniques for constructing Bayesian networks from probabilistic knowledge 

bases abound (Bacchus 1993; Goldman and Charniak 1993; Haddawy 1994). 
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Druzdzel (1997) discusses five useful properties of probabilistic knowledge rep- 

resentations making them desirable to use in our situation. In particular, 

1. Directed probabilistic graphs capture essential qualitative properties of a do- 

main, along with its causal structure. 

2. Concepts such as relevance and conflicting evidence have a natural, formally 

sound meaning in probabilistic models. 

3. Probabilistic schemes support sound reasoning at a variety of levels ranging 

from purely quantitative to purely qualitative levels. 

4. The role of probability theory in reasoning under uncertainty can be compared 

to the role of first-order logic in reasoning under certainty. 

5. Probabilistic knowledge representations support automatic generation of un- 

derstandable explanations of inference for the sake of user interfaces to intelli- 

gent systems. 

2.6   Summary 

This research builds on the foundations laid by three separate research fields — 

human-computer interaction, artificial intelligence, and user modeling — concerning 

interface agent research. The orthogonal approach of each field presents a number 

of strengths. Furthermore, the relevant weaknesses of the three research fields have 

been given. These weaknesses have served to provide areas for additional research. 

While researchers in each field are cognizant of the strengths and weaknesses in their 

own field, this background has served to introduce researchers in any one field the 

strengths and weaknesses of the other two. This chapter has also served to summarize 

relevant background on decision theory and Bayesian networks. 
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III.   Philosophy of Offering Assistance 

This chapter presents the foundational philosophy for an approach offering timely, 

beneficial assistance. Specifically, the underlying philosophy for ascribing user intent 

and how this philosophy can be used by an interface agent acting as a decision maker 

for a user is discussed. Furthermore, this chapter discusses how interface agents play 

a key role in symbiotic information retrieval and decision support, a new approach 

for collaborative, decision-theoretic assistance. 

3.1    User Intent Ascription — From Goals to Actions 

Recall that the definition this dissertation uses for user intent is "the actions a 

user intends to perform in pursuit of his/her goal." To ascribe user intent, interface 

agent designers must identify the salient characteristics of a domain environment 

and specifically determine goals a user is trying to achieve, the reason and/or cause 

for pursuing those goals, and the actions to achieve those goals (Brown, Santos Jr., 

Banks, and Oxley 1998). This approach is based on the belief that what a user 

intends to do in an environment is the result of environmental events and/or stimuli 

occurring in the environment and by the goals they are trying to obtain as a reaction 

to the events and stimuli. That is, the reason why users perform actions is to achieve 

goals they pursue as a result of environmental stimuli. Social scientists support this 

belief about why we act. To quote from Pestello and Pestello (1991): 

we act, either verbally or overtly, in response to the symbolic meaning 
the confronting object has for us in the given situation. 

Social scientists use intentions (as determined by surveying subjects) to measure 

possible future behaviors (i.e., actions) (Pestello and Pestello 1991). That is, what a 

user says he/she intends to do is indicative of what he/she really might do. They note 

that intentions do not necessarily translate into action, i.e., ascribing user intent is 

an uncertain process. The philosophy used in the research in this dissertation, on the 
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other hand, is to observe behavior (and other environmental events) in an attempt 

to ascribe a user's intent so as to predict future behavior. 

Benyon and Murray (1993) use the term task or intentional level to describe 

the component of a user model containing knowledge about the user's goals. The 

task level knowledge is used to infer the goals the user is pursuing. They state that 

"failure to recognize the intentions underlying some user action will result in less 

satisfactory interaction" as this results in failing to recognize the pursuit of one goal 

versus another. 

To achieve a goal a user must perform certain actions. Goals can be composed 

of multiple actions with many pre- and post-conditions. Pre-conditions are directly 

observable events in the environment (e.g., nodes A and B are not mutually exclusive, 

sensor A7 is non-operational, the plane's altitude is 10,000 ft. above sea-level). These 

pre-conditions cause a user to pursue a goal and/or affect the goal a user will pursue. 

Additionally, other factors affect the goals a user pursues as well as the actions the 

user will take to achieve the goal. In particular, human factors (e.g., skill, work load, 

expertise, etc.) all affect the user's decision to pursue goals and perform actions in 

pursuit of goals. Typically, these factors are not directly observable but they are 

measurable, either a priori, such as skill or expertise, or dynamically as the user 

interacts with the environment, e.g., work load. 

A directed acyclic AND/OR graph shows causality between the pre-conditions, 

goals, and actions. For AND goals, all the actions must be performed to achieve the 

goal. For OR goals, only one action is needed to achieve the goal. Similarly, pre- 

conditions for a goal may all have to be present (AND), or one or more may need 

to be present (OR). Other possible relationships can exist. For example, an XOR 

relationship would represent the case where only one pre-condition or action can be 

"active" for a goal. For example, Figure 2 shows an OR goal and several sub-goals. 

Pre-conditions in this figure are the roots of the tree and the actions are the leaves 

of the tree. 
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Figure 2     A directed acyclic graph representation of a user model. 

There are several advantages to representing users' intentions in a goal hierar- 

chy, as represented by a directed acyclic AND/OR graph, such as the following: 

• Goal abstraction allows one to design and detect higher level goals, in pursuit of 

lower level goals. 

• Keyhole plan recognition (see Section 2.3) is made easier by explicitly enumerating 

pre- and post-conditions and atomic actions composing goals (Albrecht et al. 

1997; Waern 1996). 

• Natural language explanations of actions based on prediction of goals can be easily 

generated from the structure. 

57 



3.2   Approach — Symbiotic Information Reasoning and Decision Support 

The dissertation hypothesis is part of an encompassing hypothesis that serves 

as a foundational framework for the entire dissertation. This framework hypothesis 

is stated as follows: 

A holistic, decision-theoretic methodology to the interface agent devel- 
opment life cycle addresses the need for symbiotic information reasoning 
and decision support. 

The methodology takes a human-centered approach to task partitioning, where the 

computer (i.e., interface agent) is responsible for abstracting and analyzing infor- 

mation from the user's environment to enable the user to understand the relevant 

information and performing necessary analysis to allow the system to provide in- 

formation highlighting and user focus of attention activities. The methodology ad- 

dresses the entire development life cycle of an interface agent (and its user model), 

from requirements to maintenance. 

The principle of Symbiotic Information Retrieval and Decision Support 

(SIRDS) as an approach for collaborative, decision-theoretic assistance was first 

presented at the 19th Interservice/Industry Training Systems and Education Con- 

ference (Banks, Stytz, Santos Jr., and Brown 1997). Focusing on strengths of the 

artificial intelligence, human-computer interaction, and user modeling research com- 

munities, the goal of the SIRDS approach is to develop comprehensive software engi- 

neering, knowledge engineering and acquisition methodologies, principles, heuristics, 

and tools for symbiotic information reasoning and decision support. 

The name for the approach is descriptive of its intent. The interface should op- 

erate symbiotically; that is, work tasks should be appropriately partitioned between 

the computer and the user. The computer's strength lies in its ability to perform 

data acquisition and management (to include display of this information (Horvitz 

and Barry 1995)) from many heterogeneous sources, low level quantitative and qual- 

itative data analysis, and routine inference to enable decision support.   A user's 
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strength lies in the ability to provide guidance and insight concerning the informa- 

tion that is necessary to draw complex, higher level inferences from the data. A 

symbiotic approach is necessary because the objective is to let the user and the com- 

puter share the task load; therefore, a human-centered approach to task partitioning 

is used. 

The information reasoning component of the approach deals with issues related 

primarily to abstracting and analyzing information. The decision support aspect 

relates to the need to enable the user to understand the relevant data and to perform 

necessary analysis to allow the system to provide information highlighting and user 

focus of attention activities. 

In addition to performing information retrieval and analysis, SIRDS uses infor- 

mation visualization techniques to enable the user to understand the derived informa- 

tion, synthesis operations, and available processing options. However, to maximize 

user effectiveness in an information dense environment, the approach must operate 

in anticipation of user information needs. To do so, we must first ascertain user 

information requirements based on the current situation and a history of required 

information. The SIRDS approach then initiates data retrieval operations and pro- 

vides focus of attention on and analysis of the resulting relevant information. 

SIRDS requires the development of an adaptive, intelligent, learning human- 

computer interface. Construction of the interface requires a mix of traditional 

human-computer interaction techniques, data visualization, and intelligent agents. 

To be sure, intelligent agents are a key aspect of the SIRDS approach. They per- 

form information fusion, analysis and abstraction, as well as deriving information 

requirements and controlling information display. 

An interface agent, possessing knowledge of the environmental stimuli, user 

goals, actions, and various human factors can act as an assistant, offering assistance 

on behalf of the user. This knowledge can be captured in a user model. Specifically, 

a knowledge representation capable of capturing the causal relationship between the 
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Stimuli, goals, and actions must be used. Furthermore, since ascribing user intent is 

inherently uncertain, the knowledge representation should be capable of representing 

the uncertainty in a sound, non-ad hoc manner. Bayesian networks meet both of 

these criteria. The next chapter discusses how an interface agent can use knowledge 

of a user's goals and the current environmental state to act as a decision maker on 

behalf of the user. 

3.3   Conclusion 

The philosophy and the symbiotic information reasoning and decision support 

approach presented in this section are foundational to the construction of a dynamic, 

uncertainty-based knowledge representation for user intent ascription. Previous re- 

search in the fields of user modeling (Benyon and Murray 1993; Jameson 1996; Waern 

1996) and social science (Pestello and Pestello 1991) lend support to this founda- 

tion. Experiments performed also corroborate this foundation (see Chapter VII). 

Interface agents, a key aspect of the SIRDS approach, using this foundation are able 

to provide assistance to a user based on the goals the user is pursuing, taking into 

account human factors that affect the user's decision to pursue goals and perform 

actions in pursuit of goals. 
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IV.   Decision Theory-Based Approach 

The previous chapter introduced the philosophy underlying the relationships between 

pre-conditions, goals, and actions as well as SIRDS as an approach for collaborative, 

decision-theoretic assistance. This chapter presents the Core Interface Agent (CIA) 

architecture. The CIA architecture implements the philosophy for user intent as- 

cription and is based on the symbiotic information retrieval and decision support 

approach and functions as an autonomous decision maker, acting on behalf of the 

user. 

The details of the entire architecture are developed over several chapters. 

Specifically, this chapter focuses on the decision making capabilities of the interface 

agent. The chapter describes how a Bayesian network-based user model (capturing 

the probabilistic causality between pre-conditions, goals, and actions) and associated 

utility functions (capturing a user's utility for having the interface agent perform an 

action on the user's behalf to achieve a goal) can be used in a decision-theoretic man- 

ner to offer assistance to a user. Chapter V presents the requirements levied on the 

architecture and the associated metrics to measure the agent's ability to meet those 

requirements. Furthermore, Chapter V discusses how these metrics can be combined 

into a requirements utility function that can be used to determine when the agent is 

not meeting the requirements. Finally, Chapter V describes how a multi-agent sys- 

tem of correction adaptation agents can be used to correct an inaccurate user model 

as determined by the requirements utility function. Chapter VI discusses how the 

CIA architecture fits into an agent development environment. The elicitation of the 

user model and utility functions is best discussed in Chapter VII, which discusses in 

detail the three systems used for experimentation. 
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4.1    Core Interface Agent Architecture 

The Core Interface Agent (CIA) architecture is a multi-agent system composed 

of an interface agent and a collection of correction adaptation agents. The purpose 

of the architecture is to provide assistance to the user. This purpose is accomplished 

by maintaining an accurate model of the user's interaction with the target system 

environment. The user model is used to ascribe the user's intent. Figure 3 gives an 

overview of the CIA architecture. The task of ascribing user intent is delegated to 

the interface agent component of the architecture, while continual adaptation of the 

interface agent's user model is a task shared by the interface agent and the collection 

of correction adaptation agents. 

Human 
User/ 

Operator 

Interface 
Agent 

Core Interface 
Agent Architecture 

bid requests 

Correction 
Adaptation 

Agents 

bids 

Figure 3     Core Interface Agent Architecture: Process flow diagram for user intent 
prediction and continual adaptation of an intelligent user interface agent. 
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A user interacts with a target system, typically a direct manipulation interface1. 

This interaction — the menus chosen, the buttons pressed, the text typed — as well 

as other target system environment stimuli (e.g., a spelling error, the arrival of a 

new e-mail message) are communicated to the CIA architecture as observations. 

These observations are used by the interface agent to infer what a user is doing 

within the environment and to ascribe the user's intent. A keyhole plan recognition 

approach is used, where the human is unaware of or indifferent to the user intent 

ascription process. Based on the knowledge of the environment that the interface 

agent possesses and the user's interaction with the environment, the interface agent 

determines the goal with the highest expected utility and offers a suggestion to 

the user via the target system. If the interface agent determines its user model is 

inaccurate, it begins a bidding process with the correction adaptation agents. The 

correction adaptation agents offer "bids" to modify the interface agent's user model. 

The interface agent allows the correction adaptation agent offering the best bid to 

modify the user model. 

Figure 4 shows the architecture of the interface agent and the correction adap- 

tation agents. The architectures for the interface agent and correction adaptation 

agent are the same. The difference between the two is the implementation of the cor- 

rection model, discussed in Chapter V. The agents, as well as the target system, all 

communicate via the Knowledge Query and Manipulation Language (KQML) (May~ 

field, Labrou, and Finin 1996). KQML is both a message format and message- 

handling protocol, supporting run-time sharing of knowledge between heterogeneous 

(and homogeneous) agents. KQML is emerging as a standard within the agent com- 

munity and a number of tools exist (to include application programming interfaces, 

or APIs) to support KQML integration into an agent-based application. 

Each target system observation (environmental stimuli or user action) is com- 

municated to the agents via the KQML message passing API. Every observation is 

LSee Chapter VII for a system using a natural language user interface. 
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Figure 4     Interface Agent and Correction Adaptation Agent Architecture. 

stored by the agents' evaluator in a history stack (i.e., most recent observation is 

on the top of the stack). These observations are used by the agents as evidence in 

the Bayesian network-based user model. Evidence may "fade" over time, essentially 

allowing the interface agent to "forget" past observations. The architecture sup- 

ports (possibly) unique fading functions for each observation. The types of fading 

functions supported include a time-based fading function (evidence is relevant for a 

specified time) and a queue-based fading function (only the N newest observation 

are relevant). 

The user model is composed of three components: the Bayesian network user 

model, a utility model, and a user profile. The Bayesian network user model cap- 

tures the uncertain, causal relationship between the pre-conditions, goals, and ac- 

tions. The utility model contains the utility functions for the attributes (i.e., human 

factors) and the additive multi-attribute utility function combining the other utility 

functions. The utility functions capture a user's utility for having the interface agent 
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perform an action on the user's behalf to achieve a goal. The user profile captures 

knowledge about the user including background, interests, and general knowledge 

about the user that is typically static. Two user defined thresholds, one for offer- 

ing (collaborative) assistance and one for autonomously performing actions on the 

user's behalf to obtain a user's goal, determine how/if the interface agent will offer 

assistance. This approach is the same as the one presented by Maes (1994a), except 

she based her thresholds on statistical probabilities and the ones in this research are 

based on the expected utility function. The user profile also contains the values of 

any static human factors (e.g., skill, spatial memory). The normalized values of these 

human factors can be determined off-line and do not change as the user interacts 

with the target system. 

4.1.1 Offering Assistance. The interface agent determines what type of 

assistance to offer a user by calculating the expected utility of offering assistance 

for a goal, EU(aG). This calculation occurs both periodically and whenever new 

evidence is observed2. The target system is responsible for displaying the suggestions 

to the user and/or performing the suggested actions. A suggestion is offered only 

if the expected utility exceeds a user chosen threshold for offering assistance. As 

implemented, the interface agent autonomously performs the actions associated with 

the highest ranked goal (based on its expected utility) if the goal's expected utility- 

is greater than the autonomy threshold3. Otherwise, if the goal's expected utility 

is above the collaborative assistance threshold, the interface agent sends a request 

(i.e., a KQML message) to the user to perform on-the user's behalf the actions that 

would achieve the goal. Otherwise, the interface agent offers no assistance. 

2The periodic calculation allows the interface agent to offer assistance even if the environment 
is static, e.g., the user is not performing actions. This may be helpful if, for instance, the user does 
not know which actions to perform and performs no actions as a result. 

3In actuality, the interface agent generates and sends a KQML message to the target system 
to perform all the non-observed actions associated with the highest ranked non-observed goal. 
The "non-observed criteria" prevents the interface agent from suggesting non-faded (i.e., recently 
observed) goals and associated actions. 

65 



There are a number of other ways to decide the goals for which to offer as- 

sistance. Among the possible alternatives, the interface agent can suggest any goal 

above the collaborative threshold and/or perform those actions associated with all 

goals above the autonomous threshold value. A slight variation can limit the number 

of suggestions made and actions performed. This would be useful for target systems 

with many goals whose expected utility values were significantly close. However, 

the implemented method for suggesting assistance is better than the alternatives for 

the following reason: any assistance actually performed is added to the evaluator's 

history stack as an observation. These new observations affect the updated belief 

probabilities and therefore the expected utility ranking of the other goals. There- 

fore, a myopic assistance suggestion method is better. However, future versions of 

the CIA architecture may allow the agent to collaboratively suggest more than the 

top ranked goal. 

There are three underlying methodologies utilized in the CIA architecture. 

These methodologies are a decision theory-based approach for assistance (presented 

next), requirements metrics (Section 5.1), and the correction model and associated 

correction adaptation agents (Section 5.3). 

4-2   Decision-Theoretic Assistance 

Utility theory, using Bayesian techniques for assessing the probabilities, is a 

non-ad hoc approach for predicting user intent. The user's utility function can take 

into account relevancy of the goal with respect to any number of attributes and/or 

discriminators in the environment. These attributes tell us what is important, ex- 

plicitly enumerating those factors that impact the utility of choosing the goal. The 

attributes may take into account the psychological factors, such as the user's cogni- 

tive load or preferences; system factors, such as processor load, explicit requirements 

placed on the system by the designer (e.g., reaction time); or simply the goal at 

hand. For the attributes used, see Appendix B. 
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An interface agent can use the utility function to determine the following: 

t What action to take — the ones with the highest expected utility; 

• When to take action — when the expected utility is above some user-defined 

threshold; 

• Why to take an action — the action helps the user achieve the goal they 

are pursuing; and 

• How to take an action — the action itself. 

The user model component of the CIA architecture (see Figure 4) is responsible 

for storing the user's utility function U(G, a, A) as well as performing the expected 

utility calculations for determining the type of assistance to offer the user. EU(aG) 

is calculated by using the Bayesian network user model to perform belief updating 

on the goal random variable and the utility of suggesting the actions used to achieve 

the goal. The remainder of this section presents the details of the CIA architecture's 

approach to offering decision-theoretic assistance. 

Let A = {autonomous, collaborative, none} denote the set of types of assis- 

tance the interface agent can offer the user for Q, a finite collection of goals. For 

each goal G € Q there is a finite collection of actions AG £ Ag for achieving that 

goal, where Ag =   U AG is a finite collection of all possible actions the user can 
Geg 

perform.  Let aG = (a, G) £ A x Q denote the type of assistance offered for goal 

G. Let A denote an n-dimensional vector of applicable discriminators that may 

also impact the utility (e.g., work load). In decision theory, these discriminators are 

termed attributes. This dissertation uses both terms. A denotes both the discrim- 

inators themselves and the vector of discriminator values. E denotes any observed 

evidence and £ any background information on the user. The background informa- 

tion can be stored as a user profile, allowing persistent storage of various information 

inferred about the user. As in Equation (2), E and £ are random variables, as are 

G and AG.  Every one of these random variables is a random variable (i.e., node) 
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in the Bayesian network user model. The Bayesian network also serves to define 

the probability distribution via a joint probability density function over the random 

variables. 

Let tt(-) be a positive real-valued multi-attribute utility function and u(aG, A) 

be the value of «(•), denoting the utility of offering assistance aG for goal G, given 

the consequence A of this assistance. Specifically, u(aG=True, A) is the utility of 

offering assistance for the goal if the user is pursuing the goal (i.e., the assistance is 

right). u(aG=Faise, A) is the utility of offering assistance for the goal if the user is 

not pursuing the goal (i.e., the assistance is wrong). Let Pr(G = True\E,£) denote 

the probability the user is pursuing goal G given evidence E and £. Conversely, let 

Pr((? = False\E,£) denote the probability the user is not pursuing goal G given 

evidence E and £. Let the expected utility function, EU(aG), be defined4 as 

EU(aa)   =   S[u(aG,A)] 

=   Pr(G = True\E, Z)u{aG=TTue, A) 

+ Pr (G = False | E, t)u(aG=Fai,e, A). (4) 

Since a goal is achieved by performing actions, the utility function u(aG, A) 

can be further decomposed. There are two decompositions we must consider since 

the goal-action graph is represented with an AND/OR graph. For AND goals, all the 

actions must be performed to achieve the goal. Given an action a € AG, let £/"(•) be a 

positive real-valued utility function and U(G, a, A) the value of the function denoting 

the utility of action a with respect to goal G and the value of the discriminators, A. 

Let Pr(a|E,£) denote the probability of action a given evidence E and £. We can 

now further refine u(aG, A) as follows: 

u(aG, A) = £ Pr(alE> OU(G, a, A). (5) 
a€AG 

4E and f are suppressed from the equations. 
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For OR goals, the interface agent chooses the best action to achieve the goal. 

We define u(aG, A) as follows: 

u(aGt A) = max Pr(a|E, £)U(G, a, A). (6) 
a€AG 

The interface agent acts as a rational decision maker, using the maximum- 

expected-utility criterion presented in Section 2.4. Equation (4) allows the interface 

agent to obtain a rank ordering over all possible assistance. This ranking is stored in 

the evaluator's history stack and can be used by the interface agent and correction 

adaptation agents (see Chapter V). As mentioned previously, the interface agent 

suggests the goal with the maximum (highest) expected utility taking into account 

the user-defined assistance thresholds. Figure 5 shows a decision tree for the interface 

agent for one goal. For the decision node in Figure 5, Equation (4) is evaluated for 

each of the types of assistance, A. 

4-3    User Model Construction 

Construction of the Bayesian network user model and associated utility func- 

tions raises a difficult question: "how does a designer best construct the user model?" 

For environments where the user's goals and actions are relatively static, a designer 

can use any number of well-known knowledge elicitation techniques (Cooke 1994) 

along with methods for Bayesian network construction (discussed in Section 2.5). 

An approach for determining the goals, actions, and pre-conditions within an envi- 

ronment for adaptive systems is offered by Benyon and Murray (1993). They point 

out five analysis phases that must be considered when designing adaptive systems. 

The first two, functional and data analysis, are analogous to the software engi- 

neering techniques of function-oriented and state-oriented problem analysis (Davis 

1993). The third phase, task knowledge analysis, focuses on cognitive characteris- 

tics required of users by the system (e.g., cognitive loading). The next phase, user 
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Figure 5     The Interface Agent's Decision Tree for One Goal. 

analysis, determines the scope of the user population where the system is able to 

respond. This analysis is concerned with obtaining attributes of users of the ap- 

plication. The last phase, environmental analysis, is, obviously, concerned with the 

environment within which the system is to be situated in, including physical aspects 

of the system. This declarative approach was used for two of the three experimental 

domains (see Chapter VII). 

Certain environments do not allow designers to fully specify the user model 

a priori. In these cases, the user model must be dynamic. Designers can therefore 
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consider research on learning Bayesian networks (Geiger and Heckerman 1995; Heck- 

erman 1995; Heckerman and Geiger 1995; Sarkar and Murthy 1996; Friedman and 

Goldszmidt 1996; Chickering, Heckerman, and Meek 1997; Chu and Xiang 1997; 

Greiner, Grove, and Schuurmans 1997; Meek and Heckerman 1997; Ramoni and 

Sebastiani 1997) and utility functions (Rust 1996). Research on learning Bayesian 

networks has shown it is possible to learn both the structure and the parameters (i.e., 

conditional probabilities) of the network. Rust (1996) presents an overview of several 

researchers' work on computing users' utility functions by backward induction. Fur- 

thermore, Rust discusses the applicability of these learned utility functions as models 

of real users, stating that under certain circumstances, these utility functions serve 

as good approximations to a user's "real" utility function. 

For the research presented in this dissertation, learning Bayesian network tech- 

niques have limited applicability. As a result of the user intent ascription philosophy 

presented in Chapter III, the structure of the learned Bayesian network is restricted 

to the pre-conditions to goals to actions philosophy. This forces pre-condition random 

variables in the Bayesian network to be parents of goal random variables. Likewise, 

goal random variables must be parents of action random variables. Existing tech- 

niques for Bayesian network structure learning do not account for this structure of 

the Bayesian network user model. Furthermore, these techniques do not account for 

the semantics of the AND/OR graph used in this research. These limitations do not 

prevent the learning of the conditional probabilities. The technique of learning of 

the conditional probabilities is used in this research to correct the user model. 

Two factors allow us to bypass the limitations with existing structural estima- 

tion techniques for Bayesian networks: domain dependent information and the rank 

ordering over all possible assistance. Domain dependent information allows design- 

ers to dynamically build user models given known information about the types of 

interactions users have with the target system. Research performed by Horvitz et al. 

(1998) revealed classes of evidential distinctions, providing information about the 
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structure of the Bayesian network needed to make inferences about a user's prob- 

lems and the user's need for assistance. For example, actions performed in succession 

over a short time period may be indicative of actions that may be associated with 

the same goal. See Section 2.3 for the classes Horvitz et al. identified. Several user 

model construction heuristics were identified during performance of this research 

and are discussed in Section 5.5. Using domain dependent information in this way is 

different than the declarative approach previously discussed. In the latter, interface 

agent user model designers use their domain expertise to a priori design the user 

model. In the former case, domain dependent information is used to procedurally 

"guide" the construction of the user model, based on a particular user's interactions. 

The CIA architecture's rank ordering over all possible assistance makes it pos- 

sible to modify the existing user model. For example, new goals can be added to 

the user model associating actions with the new goal that have high expected utility. 

Alternatively, actions with low expected utility for achieving a goal can be removed 

from that goal's set of achievable actions. The approach of using domain indepen- 

dent information and the CIA architecture's rank ordering over all assistance was 

used in one of the three experimental domains (see Chapter VII). 

The problem with structural estimation of the utility functions is what Bellman 

(1957) calls "the curse of dimensionality." "The curse of dimensionality" states that 

the computational effort to compute the decision maker's utility function increases 

exponentially with regards to the number of states and decision variables as well as 

the number of time histories. Based on research on multi-attribute utility functions 

presented in Section 2.4, an expert systems approach was taken in this dissertation 

similar to the one presented by Horvitz and Rutledge (1991). The authors used 

utility functions assessed by experts for prototypical situations and models of time- 

dependent utility. The prototypical utility functions are modified by applying a 

mathematical model. 
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V.   Interface Agent User Model Correction 

As discussed previously, an accurate user model is considered necessary for effective 

prediction of user intent. However, there are many possible causes for an inaccurate 

user model. The plethora of machine-learning techniques employed in current user 

models attests to two facts: users are different and user behavior changes over time. 

Both of these facts are causes of the same effect: a deviation of user behavior from 

the originally specified and designed user model (assuming initially an accurate user 

model is captured). User models that fail to dynamically adapt to different users 

and the changing behaviors and/or needs of a user are doomed to be inaccurate in 

short order. 

This chapter is organized as follows. Section 5.1 introduces four requirements 

for an interface agent. Associated with these requirements are a set of metrics 

that measure an interface agent's ability to meet the requirements. To account 

for the uncertainty and dynamics involved in predicting user intent and modeling 

user behavior, the set of requirement metrics can be combined into a requirements 

utility function that can be used to determine when and how to correct the interface 

agent's user model. Section 5.2 discusses several types of specific problems that may 

arise as the user's needs change over time. Section 5.3 discusses how a multi-agent 

system of correction adaptation agents can be used to correct an inaccurate user 

model using the requirements utility function. Finally, Section 5.5 describes a theory 

for correction adaptation agent evolution, showing how a collection of "atomic" 

correction adaptations can evolve into fully functional agents. This theory is useful 

in answering the question "which correction adaptation agents do we build?" 

5.1   Interface Agent Requirements and Metrics 

For the agent to perform within its environment, the agent must determine 

what is important to model in the domain, with associated discriminators and/or 
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metrics to determine and define why, when, and how to dynamically change the 

user model. To improve an interface agent's utility for providing assistance to the 

user, agent development must explicitly take into account the agent's requirements. 

Methods for determining when those requirements are not being met and how to 

correct the agent's user model is the primary focus of this section. 

Many of the requirements for agents are not well defined and many of these 

requirements are not mutually exclusive. Furthermore, these requirements do not 

set agents apart from other forms of software (see Petrie (1996)). This shortfall 

apparently causes most researchers to ignore requirements for agent development. 

This section explicitly considers requirements for interface agents. The section 

develops a well-defined, measurable set of requirements, with associated metrics, to 

determine if the interface agent is meeting the requirements. Each metric is catego- 

rized under the top-level requirement associated with it; however, a clear delineation 

between the requirements is not always possible and therefore some of the metrics 

measure more than one requirement. Each metric is evaluated on a scale from 0 to 1; 

where 1 signifies the agent perfectly meets the requirement. Section 5.1.1 describes 

how the set of requirement metrics can be combined into a requirements utility func- 

tion that can be used to determine when and how to correct the interface agent's 

user model. 

The metrics were chosen for the "insight" they provide for the interface agent's 

utility for offering assistance. The set of metrics is admittedly ad-hoc. This is not 

the only set of possible metrics. Empirical tests should be performed to validate the 

metrics used actually measure all aspects of the interface agent's behavior. However, 

these tests were out of scope for this dissertation. The usefulness of the metrics is 

argued on a philosophical basis. While this research focuses on illuminating the 

nature of what is required for an interface agent to provide beneficial assistance, it 

also provides a reasonable first step towards providing an empirical analysis of the 

requirements by providing well-reasoned justification for the use of a set of metrics. 
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This methodical way of measuring an agent's ability to provide assistance that can 

be incorporated into an interface agent architecture. Other researchers fail to provide 

an explicit means to measure the utility of their agent's assistance. 

The following four requirements capture the essence of interface agents. 

Definition 1 Adaptivity — the ability to modify an internal representation of the 

environment as a result of sensing of the environment in order to change future sens- 

ing, acting, and reacting for the purpose of determining user intent and improving 

assistance. 

Adaptivity implies a number of sub-requirements. It implies an agent is perceptive. 

That is, the agent can distinguish relevant features in the environment in relationship 

to the method necessary to act and react within the environment. Concerning an 

agent's ability to act and react, the adaptivity requirement assumes the agent is 

able to affect the environment through its acting and reacting. Reactive "behavior" 

implies a timely response (i.e., stimulus-response) to sensed events, whereas to act 

connotes a deliberative (reasoned) response to events. The relationship between the 

agent's sensing, acting, and reacting with regards to the internal representation of 

the environment further defines properties for the agent. Goodwin (1993) defines 

these deliberative agent properties to include predictive — the ability to model the 

environment so as to predict how its actions will affect the environment; interpretive 

— the ability to correctly assess its sensors; and rational — the ability to perform 

actions to obtain its goals. 

The precision metric measures the interface agent's ability to accurately sug- 

gest assistance to the user. The precision metric is defined as 

A number of correct suggestions , , 
precision number of suggestions 

Correct assistance includes not offering assistance as a result of the expected utility 

of the highest ranked goal and the user's chosen assistance thresholds. 
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The precision metric does not account for the agent's failure to suggest as- 

sistance when assistance should have been offered. For example, if the agent only 

makes one suggestion and that suggestion is correct, Equation (7) evaluates to 1. 

However, if the agent should have suggested assistance more often, but was unable to, 

the precision metric does not measure this problem. An inability to offer assistance 

arises from the following situation. The CIA architecture attempts to determine the 

type of assistance to offer the user every time an observation is communicated to 

the interface agent. If a new observation is communicated to the agent before it 

determines the type of assistance to offer (including offering no explicit assistance), 

the agent abandons attempting to offer assistance based on the previous observation 

and starts another Bayesian belief updating cycle based on the new observation. 

To measure this aspect, an assistance capability metric is defined, measuring the 

agent's capability to offer suggestions, as defined by the percentage of times an agent 

is able to suggest correct assistance based on a particular "state of the world" before 

the state of the world changes (e.g., the agent receives more information from the 

application about the environment). 

This metric, in effect, measures the ability to provide correct assistance to the 

user and is defined as 

A number of correct suggestions , , 
Mastiltance_CaPabiuty = number 0f state - of - world changes' { } 

A slight revision of this metric, called the perceptive metric, measures the interface 

agent's ability to perceive the state-of-the-world change and offer assistance, whether 

it is correct or not. The main reason for having this metric is because a suggestion 

is considered correct only if the user explicitly indicates the assistance is correct or 

conversely indicates the assistance is incorrect. The user may only explicitly indicate 

the suggestion's correctness if the interface agent makes a collaborative suggestion. 

This conservative approach to assessing whether a suggestion is correct ensures the 

CIA architecture does not wrongly assume a suggestion was correct. The perceptive 
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metric is defined as 

A number of suggestions  /„x 
Mperceptive = number 0j state _ 0f _ woHd Ganges' 

The precision and assistance capability metrics are related to the precision and recall 

statistics, respectively, used in text filtering systems (Oard and Marchionini 1996); 

where the precision statistic is defined as a ratio of the number of relevant found 

documents to the total number of documents found and the recall statistic is defined 

as the fraction of the actual set of relevant documents that are correctly classified as 

relevant. As an example, a value of 1 for Mprecuion means the interface agent always 

makes correct suggestions when capable. 

The reactive metric measures how quickly the agent can respond (i.e., act) to 

an environmental stimulus. We define Tsense^act as the measure from the time the 

stimulus is sensed (i.e., received) by the agent to the time the agent is able to act. 

Note that no explicit action is considered an action. For example, the agent may 

determine the user does not need assistance currently. To ensure Mreactive G [0,1] 

a user-defined cutoff time, Tcutoff, is provided. The agent must provide assistance 

within this time limit otherwise the interface agent will not suggest assistance. This 

metric is defined as 
„ -               A   4        •* sense—>act {-tn\ 
Motive =  1 =  \l^4 

As an example, if the interface agent is unable to respond within Tcutoff, 

Tsense^act = Tcutoff (by design) and therefore Mreac«„e = 0. 

Definition 2 Autonomy — the ability to sense, act, and react over time within 

an environment without direct intervention. 

This requirement, more than any other, seems to define agency as Petrie (1996) ar- 

gues. However, Petrie also notes autonomy is not well defined within the community. 

Franklin and Graesser (1996) argue autonomy implies a reactive (sensing and act- 

ing within a time constraint), temporally continuous, and goal-oriented (pro-active) 
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agent. Direct intervention means explicit "activation" by the user or other agents. 

This definition does not preclude our agent from responding to this sort of collab- 

orative interaction with the user and other agents. Instead, it is desired that the 

interface agent be able to act on behalf of the user without being "told" to do so. 

Indirect intervention takes the form of "looking over the shoulder" (Maes 1994a) of 

the user to determine what the user is doing and determining how to assist the user. 

Autonomy implies some sort of saved internal state, whereas adaptivity explicitly 

requires it. One external metric measures the number of suggestions the agent offers 

to the user without the user's request. This metric is defined as follows: 

A number of autonomous suggestions ,   v 
Mexternai-auton0my = number of suggestions ' K    ' 

A value of 1 for Mextemai-autonomy means none of the agent's suggestions are the result 

of the user explicitly requesting help from the agent. 

Definition 3 Collaboration — the ability to communicate with other agents, in- 

cluding the user, to pursue the goal of offering assistance to the user. 

All interface agents collaborate with users. Collaboration with the user best differ- 

entiates interface agents from other types of agents. This collaboration may be as 

simple as making a suggestion to the user and asking if the suggestion was correct 

or not, or as complicated as observing the user's actions within the environment, 

attempting to determine the needs and intent of the user, and providing assistance 

at "appropriate" times. Collaboration allows agents to increase their internal rep- 

resentation accuracy, resolve conflicts and inconsistencies within the representation, 

and improve their decision support capabilities (Sycara et al. 1996). Collaboration 

may also involve non-human agents. For heterogeneous agents, collaboration im- 

plies an agreed upon agent communication language and a commitment to use that 

language. Central to collaboration are the behaviors an agent can perform and the 

protocol in which they communicate those behaviors (Decker et al. 1997). 
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Collaboration metrics are therefore used to measure both collaboration with 

the user and other agents — in the case of this dissertation, correction adaptation 

agents (discussed in Section 5.3). With regards to measuring the collaboration re- 

quirement with correction adaptation agents, we are concerned with the efficiency of 

the collaboration using the agent's communication language1. There is a plethora of 

performance metrics for communication protocols (Spragins, Hammond, and Paw- 

likowski 1991) that we can use to determine the ability to communicate with other 

agents over networks. While not all the factors determining these metrics are within 

the control of the interface agent (e.g., network throughput is largely determined by 

the bit rate), knowledge of communication bottlenecks can help the interface agent 

make informed decisions about accessible and applicable information sources. With 

regards to measuring the interface agent's ability to collaborate with the user, we are 

concerned with the effectiveness of the collaboration. We define a metric to measure 

the level of collaboration. First, we define a metric to measure the percentage of the 

"workload" the agent performs versus the user as follows: 

A #0/ agent actions , „,. 
Agentworkload = # ^ ^^ acUons + # of user actions- ^   > 

Note that this metric is based on actions and not suggestions since a suggestion 

may contain several actions. Each user can determine the amount of collaboration 

he/she desires by setting a collaboration threshold, ranging from 0 to 1, specifying the 

desired amount of collaboration between the interface agent and user. For example, 

a collaboration threshold value of 0.5 means the user desires the "workload" to be 

divided evenly between the agent and user, whereas a threshold of 0 indicates the 

user wants the agent to perform no actions on his/her behalf. Using this threshold, 

we can define the collaboration metric as follows: 

M'collaboration = 1 ~ \Tc ~ Agentworkload\j (13) 

xWe are currently using KQML (Mayfield, Labrou, and Finin 1996). 
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where Tc is the user's collaboration threshold. 

Definition 4 Robustness — the ability to degrade assistance gracefully. 

Robustness is required for interface agents since they, more than other agents, must 

be capable of gracefully degraded performance because they must interact with the 

most complicated of agents — users. However, robustness is not limited to perfor- 

mance. Extensibility and maintainability are also key. It is desired for the agent 

to possess the ability to easily adapt to information and requirement changes. The 

former is best dealt with under the adaptivity requirement (e.g., the ability to adapt 

to different users), while the latter is better dealt with during agent specification. 

The agent should have the ability to add new sensor information dynamically or be 

used in a new environment with different requirements. The ability of the inter- 

face agent to correct its user model is partially related to the number of correction 

adaptation agent responses received. This correction process (described in detail in 

Section 5.3) relies on the interface agent sending a "bid" to the correction adaptation 

(CA) agents, and they in turn responding within a time limit, TcutoffCA- Assuming 

NQA correction adaptation agents, the metric is defined as follows: 

a_ number of CA agents responding .    . 
"± response -quantity = Tr • V     / 

MCA 

Similarly, we measure the average time it takes correction adaptation agents to 

respond: 
NCA 

M A i NCA /-ir\ lvl response-time — 1 rp • \xoJ 
1 cutoff CA 

5.1.1 Requirements Utility Function. A successful agent is defined as "an 

agent with the ability to provide timely, beneficial assistance (suggestions, tutoring, 

help, interface adaptations)." This definition appears very open ended. The follow- 
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ing discussion attempts to close the ends by looking at the agent's utility in meeting 

these requirements. 

Section 2.3 discussed a number of machine learning techniques for eliciting 

knowledge for use in user models. In addition to elicitation of new knowledge, ma- 

chine learning techniques are useful for maintaining user model knowledge. Höök 

(1997) states interface agent designers need a better understanding of how intelli- 

gence can improve the interaction with the user. This understanding includes how 

machine learning techniques affect the user model and therefore interaction between 

the interface agent and user. Failure to understand this relationship may result in a 

fruitless search for ways to improve the user model. 

The set of requirement metrics allows the interface agent to readily identify 

which requirements are not being met. These metrics can be combined to obtain an 

overall qualitative measure of how well the interface agent meets its requirements. 

A utility function C/regUjreme„tg is denned for the requirement metrics of the 

agent, weighted with respect to their importance, based on some previous history. 

That is, 

Ure^irement, : w" X Rn X H H-> », (16) 

where for each history h G H of previous actions and events, u G [0,1] is a weighting 

factor for each of the n requirement metrics R (e.g., Mrei,p0n,e_tjme), and the utility- 

function maps to a real number. The weight w can be a function of time, where 

the weights are allowed to change depending on the current situation. For example, 

if the interface agent is making poor suggestions, the weight(s) associated with the 

adaptivity requirement metrics can be increased, denoting its increased importance. 

The higher the value of the utility of our interface agent, the more "successful" it is 

in meeting its requirements. 

The interface agent will not make suggestions if the requirements utility func- 

tion falls below the user-defined threshold. That is, the interface agent "knows," as 
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determined by the requirements utility function, when the user model is not accu- 

rate enough to make suggestions. The interface agent continues to observe the user's 

actions in a "sit-and-watch" mode. Furthermore, if the requirements utility function 

improves, the interface agent will make suggestions again. 

The metrics do not explicitly take into account the recency of the actions 

determining the metrics. As presented, each metric is calculated over the entire 

history of actions and events. However, in practice, it may be desirable to have 

a fading function to weigh more heavily recent actions/events. Note, however, the 

utility function C/regairement, does take history into account. If we desire to evaluate 

the metric for the last ten events, for example, the interface agent limits the history 

to the last ten events and evaluate the metrics over this history. It may also be 

desirable to have metrics evaluated over several different history lengths2. 

5.2    User Model Problems 

There are several types of problems that may arise in an interface agent's 

knowledge representation (Brown, Santos Jr., and Banks 1997; Banks, Stytz, San- 

tos Jr., and Brown 1997), as related to the agent's relevancy set (Brown, Harrington, 

Santos Jr., and Banks 1997). These problems include the following: 

• Absolute thrashing — an observable property (i.e., node) repeatedly enter- 

ing and leaving the relevancy set. The problem results from adding a node 

to the user model only to have it never become part of a relevancy neighbor- 

hood, and be removed from the user model some time later. The node's actual 

relevancy must be brought into question. 

• User thrashing — occurs when a user's intent radically changes from one 

extreme to another. If we are truly modeling user intent, we should desire 

to capture user thrashing.  However, we also desire to avoid thrashing of the 

2The advantage to evaluating metrics over varying history lengths is akin to stating mutual fund 
performance over 5, 10, and 20 years performance. 
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system's measure of user intent so we can make accurate predictions of the 

user's intent. As a concrete example, consider an aunt who is known to have 

drastic mood swings. You are aware of this, and develop ways of observing her 

current behavior to find a promising way of approaching her. You never vary 

your approach drastically. 

• Class thrashing is the result of a user who is diametrically opposed to his/her 

user class and therefore the network initially does not represent a user well and 

consequently, must "learn back" a user's behavior. This type of thrashing not 

only affects the user by making incorrect inferences, but affects the user class 

the misplaced user is currently a member of. 

Related to the above problems are the concepts of rate of divergence and rate 

of convergence. The rate of divergence is a measure of how quickly a node leaves 

the user model. We are concerned with ensuring a node that was added to the 

user model, but is not used often, will exit the network quickly, therefore allowing 

more useful nodes in the relevancy set. The rate of convergence is a measure of the 

speed the "momentum" of past observed behavior is overcome by changes in current 

behavior and therefore, how quickly the expected utility of a node will settle out to a 

particular value is important in conjunction with class thrashing. We desire to know 

how fast a user model will allow a user to overcome past behavior. For example, a 

user may exhibit a particular behavior for a "long" time and then suddenly change 

behavior, perhaps as the result of some new stimuli in the user's environment. A fast 

rate of convergence will quickly allow the user model to overcome the past behavior 

and accurately model the current behavior. 

These problems are a result of the interface agent failing to meet its require- 

ments and indicate that the agent's user model is inadequate to deal with the dy- 

namic environment. Since the interface agent possesses a set of requirement metrics 

and an associated requirements utility function, the agent can readily identify which 
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requirements are not being met and attempt to correct the problem by altering its 

user model. 

5.3   Correction Model 

This section addresses when and how to dynamically change the user model 

and prevent a quixotic search for ways to improve an inaccurate user model. The 

section discusses how a set of correction adaptation agents can use the aforemen- 

tioned requirement metrics, requirements utility function, and previous interface 

agent behavior to suggest changes to the user model. 

Every time new observations are received or periodically, the interface agent 

calculates the value of the requirements utility function to determine if the interface 

agent needs to correct the user model to more accurately reflect the user's intent. 

The implemented approach to correcting the user model is to have the interface 

agent request "help" from correction adaptation agents — special agents capable 

of correcting problems with the user model by adapting it to improve the interface 

agent's requirements utility. This section discusses a scenario for having a correction 

adaptation agent suggest changes to the ailing interface agent user model, based on 

the concept of a contractual bidding process. These agents engage in a "bidding 

process" to recommend changes to the ailing interface agent user model. The inter- 

face agent serves as a manager agent, responsible for determining when a contract 

is available (in this case, when the requirements utility function value is below a 

user-defined threshold), announcing the contract to be filled, receiving bids from the 

fodder agents (i.e., correction adaptation agents), and finally accepting or rejecting 

the bids based on their utility. Correction adaptation agents are responsible for 

altering the user model based on their specific bidding behavior component, evalu- 

ating the utility of the alteration, and making the bid. The correction adaptation 

agent that may improve the interface agent's requirements utility the most "wins" 

the contract to correct the user model. 
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In general, correction adaptation agents have no explicit domain knowledge, 

only user model knowledge (e.g., the user model parameters)3. They are "concerned" 

with increasing the utility of the user model. However, this lack of domain knowledge 

is an asset. We can use them for different Bayesian network user models regardless 

of the domain of the target application. However, as mentioned previously, certain 

correction adaptation agents may be more or less useful for certain domains due to 

the sort of interactions a user may have with the application. Therefore, we are 

even more concerned with defining the "right" correction adaptation agents. The 

idea of building the right correction adaptation agents is investigated in Section 5.5. 

The correction adaptation agents implemented for this dissertation are described in 

Appendix D. These agents are responsible for altering user model profile parameters, 

learning the Bayesian network user model conditional probabilities, and performing 

knowledge acquisition. 

Two points need to be addressed. First, the use of correction adaptation agents 

to suggest adaptations to the interface agent's user model may not seem intuitive. 

It may appear the interface agent itself is better equipped to correct its own user 

model. However, as mentioned previously, our agent already possesses a number of 

ways to adapt to the dynamic environment. The situation where the agent's require- 

ments utility falls below the threshold indicates that its adaptation mechanisms are 

incapable of dealing with the dynamic environment and needs specialized "attend 

tion." Secondly, the use of correction adaptation agents allows the interface agent 

to continue to observe the environment and possibly still offer assistance without 

utilizing computational resources correcting the user model. 

The bidding process model used is adopted from Müller (1996) and is used as 

the underlying meta-level learning mechanism for the interface agent. The model is 

formally defined as follows: 

3This restriction is relaxed. See Appendix D. 
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Definition 5 Let D represent the domain. The model can then be represented as a 

5-tuple (A, N, U, II, T,) where 

• A = {oi,  ... , an}, n>2, is a set of agents a* with mental states B{ = (O, h, E), 

where 

• O C D is a domain ontology. 

• h € H is a history of interface agent suggestions, any information the 

agent used to make its suggestions, and user choices based on the assis- 

tance offered. 

• E is the effectiveness of the agent, with respect to the various requirement 

metrics. 

N C D is the negotiation set and semantically represents the changes a bidder 

agent proposes to make to the user model. 

• U — {ui, ... , un}, where ui : A (->• Oi is a utility function for correction adaptation 

agent ait based on the interface agent's requirements utility function over time4". 

• II = (K, 7r) is a negotiation protocol, where 

• K = {start, done, ANNOUNCE, BID, REJECT, ACCEPT, REPORT} 

represents the communication primitives. 

• ir: AxK \-*2K is a protocol function mapping communication primitives 

for agents to allowable reactions. 

• E = {(7i, ... , <rn} is a set of negotiation strategies where Oi :UxAxKx2DxU H-> 

KxN. Specifically, cri(n.,ahk,N,Ui) = {k',N') with k' € irfak), N' C N. 

The correction adaptation agents' architecture is very similar to the interface 

agent's architecture (Figure 4), where each correction adaptation agent possesses 

• 

4 As mentioned previously, the weights for each requirement metric used to calculate the require- 
ments utility function may change over time, and therefore, the weights are stored in the history H 
for use in calculating the correction adaptation agents' utility over the history. 
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its own user model, an evaluator for calculating the metrics and requirements util- 

ity function, and a communication protocol handler for communicating with other 

agents. Additionally, each correction adaptation agent has a specialized bidding be- 

havior component capable of adapting the user model. In practice, each correction 

adaptation agent maintains a user model that is identical to the interface agent's user 

model until the interface agent requests help from the correction adaptation agents, 

at which time each correction adaptation agent adapts its own user model based on 

its bidding behavior component. This engineering design decision was the result of 

fear of communication latency problems with communicating large user models via 

KQML messages. 

The actual detailed definition of II and E is more appropriately left for an 

appendix (see Appendix C). Any number of bid strategies can be adopted for the 

CIA architecture. Currently, the negotiation protocol function, II, and negotiation 

strategy, E, are denned generally the same as Müller (Müller 1996), which is a sealed- 

bid, single award strategy. That is, the other agents have no idea what the "price" 

(i.e., utility) other agents are bidding. Other strategies include agents learning from 

past bids to improve future bids (Zeng and Sycara 1996). 

5.4   Performing "What If.." Analysis 

The negotiation set defined for the correction model above is concerned with 

what if changes were made to the user model. Specifically, if the interface agent had 

made a change to the user model (e.g., the fading function for a goal was changed, 

actions are added and/or removed from a goal, a new goal is created, etc.) at some 

previous timeslice, would the change have improved the user model? The correc- 

tion adaptation agent evaluates the utility of the proposed change (s) by making the 

changes to the "oldest" user model stored in the history H. Then, for each sug- 

gestion made to the user, the correction adaptation agent determines what the new 

suggestion(s) would be, based on the new user model and any evidence stored in the 
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history. The requirements utility function value is then recalculated at each time 

slice, up to the current time slice. The "winning" correction adaptation agent is the 

agent improving the requirement utility function by the greatest magnitude. This 

evaluation can be biased by multiplying the bidder agent's effectiveness E € [0,1] 

and the requirements utility function. The correction adaptation agents' effective- 

ness E is updated by simple reinforcement learning, where the "winning" agent 

receives positive learning. The reinforcement learning takes into account those bid- 

der agents determined to be "helpful." In practice, certain correction adaptation 

agents are more apt to improve certain metrics than other metrics. That is, the cor- 

rection adaptation agent's bidding behavior component affects only certain metrics. 

Therefore, if a particular metric has a significantly greater weight, w, than the other 

metrics and/or if this metric's value is significantly lower than the other metrics, 

the interface agent is likely to choose those correction adaptation agents capable 

of increasing that metric's value, thus increasing the requirements utility function's 

value. 

The philosophy behind the correction model deserves some attention. The 

correction agents cannot change the past. User actions, environmental stimuli, etc. 

are fixed in the past and cannot be changed. What can be changed is the knowledge 

the interface agents possesses in making its decisions and therefore, possibly the 

future assistance offered to the user. This knowledge is obviously stored in the user 

model. If the set of requirements metrics is considered, there are certain metrics that 

will be difficult to recalculate over the history. For example, Mprecision in Equation 

(7) depends on the number of correct suggestions. The only way the interface agent 

can determine it has absolutely made the correct suggestion is to ask the user5. 

Since the correction adaptation agents recalculate over history, the user cannot tell 

5Note that this determination means the interface agent does not know absolutely whether 
autonomous assistance is beneficial. 
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the interface agent whether a suggestion is correct or not. Some metrics, such as 

Mreacuve in Equation (10), are easily recalculated. 

Recall that Equation (4) allows the interface agent to obtain a rank ordering 

over all possible assistance. This ranking, stored in the evaluator's history stack in 

each timeslice, can be used by the correction adaptation agents to perform a "what 

if" analysis. Based on this discussion, another requirements metric can be defined. 

The misconception metric is defined as follows: 

A        getGoalRankingja) .   . 
Mmisconcepuon - number of gods  , U ) 

where getGoalRanking(a) computes the goal ranking between 1 and the total number 

of goals of the highest ranked goal associated with the action a. A metric value of 1 

indicates no misconception exists; on the other hand, a value of 0 indicates a massive 

misconception. 

The misconception metric is aptly named for the function it is intended to 

serve — identifying misconceptions in the system (to include the user). Intelligent 

tutoring systems (ITS) are particularly concerned with determining when a user has a 

misconception about a concept. For example, ANDES (Conati et al. 1997; Gertner 

et al. 1998) detects when a user does not know a physics concept or incorrectly 

applies a concept. Misconceptions arise from two different areas. If the interface 

agent could determine if the user is pursuing a goal, or should be pursuing a goal, 

but the user is performing actions unrelated to the goal, it is possible the user either 

(1) is unaware of the actions required to achieve a goal or (2) considers another 

goal to be more important. The former is an indication of a user misconception. 

The latter is indicative of an inaccurate user model, which in essence is an interface 

agent misconception.   Specifically, the utility of the goal has been over estimated 
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with regards to the goal the user feels is more important6. Note that ITS typically 

assume the domain knowledge is accurate and therefore can rule out the latter. The 

CIA architecture does not make this assumption. 

5.5   Correction Adaptation Agent Evolution 

The motivation of this section is driven by the simple fact that constructing 

correction adaptation agents "by hand" is a time consuming task. Interface agent 

designers could attempt to build several (many) agents capable of different adap- 

tations. However, we must ask the following questions: Which ones do we build? 

What is really needed? 

Initial research into interface agents identified problems that may occur in 

the user model (Brown, Santos Jr., and Banks 1997). Although it is hypotheti- 

cally possible to construct more agents to repair the problems identified, a better 

understanding about why certain correction adaptation agents are better suited to 

correcting certain metrics is needed. A top-down approach to the construction of 

correction adaptation agents allows a decomposition of the correction adaptation 

agents into atomic parts, determining first how the agents are composed. Given this 

decomposition, it is then desired to be able to combine the various parts together to 

make new agents. 

For this discussion, domain independence is assumed. The correction adap- 

tation agents are abstracted to words in a language. "Language" does not mean 

agent programming languages nor speech act theory languages. Instead, the term 

"language" is used in the computational theory sense. Each correction adaptation 

agent is modeled as a word in the language produced by a grammar. 

6It is possible the Bayesian network user model is incorrect. For example, an action may be 
incorrectly associated causally with a goal. While although this can also be considered an interface 
agent misconception, this discussion does not assume this sort of user model inaccuracy. 
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5.5.1 User Model Construction Heuristics. When a user model designer 

attempts to determine what is important in the domain to model, he/she uses one 

or more heuristics, or general rules of thumb, to guide his/her knowledge acquisition 

task. These heuristics attempt to capture salient characteristics that define user 

intent by discriminating certain observations as being relevant to determining the 

user's intent. These heuristics are not mutually exclusive and designers of user 

models typically use more than one heuristic when designing the user model. As such, 

we must identify the common characteristics of user model elicitation and adaptation 

techniques. Interface agents adapt their user models as a result of applying one or 

more heuristics. Relevant heuristics identified during this research are as follows: 

• Causality — Why a user performs actions. The user intent ascription philos- 

ophy presented in Chapter III states that a user perform actions in response to 

environmental stimuli and to achieve some goal. For example, Jameson (1996) 

describes how a causal planning model can be used to construct Bayesian net- 

works. 

• Context — What is the current context. For certain types of interface agents 

— most notably agents for information filtering and/or data mining — the 

current context is important. Taking an example from Goldman and Charniak 

(1993), if a user is referring to a bank, it is useful to know whether he/she 

are referring to a financial institution or a river bank. The context of previous 

interactions may help disambiguate the current use of a word. 

• Frequency — How often a user performs an action. Some interface agents 

use a fading function so actions become less relevant as time progresses. 

• Human-Factors — Who is the user. Knowing user information a priori can 

be useful for adapting the interface to the user's needs. Human-factors such as 

psychological factors (e.g., spatial ability, cognitive ability, temporal ability), 

as well as physiological factors (e.g., skill level, age) may be directly applicable 

to the user's needs. 
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• Modality — What modes a user prefers, or uses explicitly or implicitly. This 

heuristic captures a large portion of the meaningful characteristics in direct 

manipulation interfaces. For example, what skill level (expert, intermediate, 

novice) does the user prefer? What type of ways do they like to view their 

information (e.g., full page, page layout, outline)? What about presentation 

methods such as textual, graphical, or audible? Do they prefer natural lan- 

guage or not? The specific "tools"7 a user prefers to use can be considered a 

mode of the application. The orientation, size, position, etc. of the various 

windows, icons, and menus can also be considered a mode. 

• Resource Usage — What resources a user needs. A resource can be as simple 

as a file or printer, or it can be another application, such as a World Wide Web 

search engine. As an example, Yoshida (1997) predicts Unix resource prediction 

using graph-based induction. 

• Temporality — When a user performs an action. Do they perform a sequence 

of actions upon starting the application or prior to exiting? Does a user al- 

ways react/respond a particular way to a certain action? The actions may be 

executed by the interface agent on behalf of the user. 

Any of the heuristics presented here may be combined. However, determining 

which heuristics work "well" together is a difficult process and one not typically ad- 

dressed by researchers. It is essential to measure the effectiveness of the user model 

constructed using these heuristics against a set of measurable requirements. This 

research has already presented a methodical way of doing this in Section 5.1. Deter- 

mining the granularity used to model the domain is also important. For example, 

is it important to know the user activated the spell checker via a pull-down menu 

versus a hot-key? 

7Tools are defined to mean any function that helps the user get his/her job done. A tool can be 
a spell checker in a word processor, a macro, or a meta-method of activating another tool, such as 
using hot-keys, pull-down menus, and/or icons. 
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5.5.2 The Correction Grammar and Language. This section introduces 

a proposal for a context-free grammar (CFG) generating a language of agents for 

behavior maintenance. The basis of the grammar is the agent definition given in 

Section 2.1. The context-free grammar is defined using Backus-Naur Form (BNF) 

as follows: 

< agent >   =   < sense >< think >< affect > 

< sense >   =   < read sensors >< transform raw sensor data into 

internal knowledge representation > 

< think >   =   < inference over knowledge representation > 

< compute confidence > 

< affect >   =   < NOP > | < internal affect >< external affect > 

< internal affect >   =   < NOP > \ < write new state >< internal affect > 

< external affect >   =   < NOP > \ < physical affect >< external affect > 

For the CIA architecture presented in this dissertation, sensing involves observ- 

ing environmental stimuli and user actions (reading sensors) and affecting involves 

offering suggestions (external affecting). The decision theoretic approach taken in 

this dissertation is implemented by an agent's "think" rule. "Thinking" involves in- 

ferencing over the Bayesian network user model knowledge representation. Thinking 

involves utilizing the current sensor data as represented in the knowledge represen- 

tation and may or may not involve using past states of the world (i.e., history) as 

evidence for the Bayesian belief updating. The CIA architecture uses the expected 

utility as its "confidence factor." The agent's internal-affect provides a mechanism 

for modifying previous observations in light of new ones. Furthermore, the agent's 

correction model is a way of modifying the internal representation of the world state. 
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In addition to the preceding rules, meta-rules for constructing rules can be 

denned. These meta-rules are similar to the meta-rules presented by Goldman and 

Charniak (1993). 

< meta-function >   =   —>< sensor proposition > 

if < sensor name >=< sensor value > 

< true action >< false action > 

< sensor-proposition >   =   < sensor name >< sensor value > 

The concept of meta-rules is to provide the interface agent the ability to de- 

termine which rules should be created, what pieces should be combined and which 

ones should not be, what works well together and what does not. For example, a 

probabilistic confidence factor for if-then rule inferencing may not work well. It is 

desirable to use some metric/discriminator in determining how to form rules. The 

discussion in the next section addresses this desire. 

5.5.3 Correction Adaptation Agent Performance Metrics. For any given set 

of agents generated by a grammar, we are concerned with whether or not we have the 

right "mix" of agents. Choosing the wrong correction adaptation agents will result 

in a set of agents possibly incapable of correcting an inaccurate user model. Also, 

given a grammar, which production rules produce the best language for correcting a 

specific interface agent's user model? That is, which rules generate a language that 

gives us the best performance? 

Balch (1997a) presents the concept of behavioral diversity for a multi-agent 

robot soccer system and presents experimental results showing that more diverse 

teams perform better (e.g., score more points). His behavioral diversity is measured 

by a social entropy metric (Balch 1997b). He states the following desirable properties 

of his social entropy metric: 
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• The least diverse society is one in which all agents are equivalent. Conversely, 

the most diverse society is one in which no agent is equivalent. 

• A society where one agent is different and all other agents are equivalent is 

more diverse than one where all agents are equivalent. 

• If two societies have uniformly-sized groups (where a group is a collection of 

equivalent agents), the one with more groups is more diverse. 

The crux of Balch's research is determining the benefit of heterogeneous team be- 

haviors in the performance of a cooperative task. His research, as well as oth- 

ers (Goldberg and Mataric 1997; Haynes et al. 1995), indicates behavioral diversity 

is beneficial in some tasks. However, robot soccer, as well as hunter-prey scenarios 

used by some of the other researchers, are toy domains. His robots can only display 

one of three possible behaviors (move to ball, get behind ball, move to back field) 

for one of two situations (behind the ball or not behind the ball). For teams of four 

players, there are less than 7000 possible combinations. The domains used in this 

research are much more complex. 

Any performance metrics defined for the CFG presented above should capture 

Balch's social entropy metric properties also. These properties have the following 

effects with regards to the CFG: as words are eliminated from the language, the 

diversity metric should decrease. Alternatively, a language with a higher diversity 

metric should be able to correct more problems that might occur with the user model. 

The evolutionary computation community has studied the idea of diversity, and the 

related topic of convergence. In general, for a given population, diversity is desired 

to prevent premature convergence on a local optimum. 

To measure how diverse a set of correction adaptation agents are, consider a 

perfect grammar, capable of generating all possible correction adaptation agents. 

Denote this grammar G and the language of correction adaptation agents generated 

by G as language L. 
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Lemma 1 Let G and G' represent the grammars of two agents, respectively. Let L 

and L' be the languages generated by G and G', respectively. Given G' C G, then 

L'cL. 

That is, G' can generate only a portion of the correction adaptation agents compared 

with G. To measure this, a coverage metric is defined as: 

"'■coverage —   I rl ' \±0J 

Since L' C L, Mcoverage G [0,1]. Obviously, Mcoverage » 1 is desired. 

The above definition assumes finite languages.  What if L is infinite? There 

are several possible solutions: 

1. Restrict the format of production rules of grammar. If no directly recursive 

rules are allowed (e.g., S -» aS) or indirectly recursive (e.g., S —► aA;A —► 

bS), L will be finite. However, this restriction may be severely limiting and 

uninteresting. 

2. Change the metric definition. The number of rules in the grammar is finite. 

The coverage metric is redefined as follows 

IG'I 
■^coverage ~ Tn\ ' V-"-"/ M 

This metric definition begs the following question: if two grammars have the 

same value for the coverage metric, are they equal? That is, can they correct 

the same types of problems that might occur? 

3. Provide an equivalence class of agents. If the coverage metric is defined over the 

total number of equivalence classes of words (i.e., correction adaptation agents), 

a finite number of equivalence classes is guaranteed. This raises the interesting 

question: do certain agents subsume others? However, to define this coverage 

metric based on equivalence classes, we must define the equivalence operator. 
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One suggestion is to "group" words (i.e., correction adaptation agents) by the 

metrics they can improve. 

Two correction adaptation agents (words in the language) may provide similar 

correction adaptations. Under resource constraints, the inclusion of both correction 

adaptation agents in the collection of agents the interface agent considers "bidders" 

may be harmful. Therefore, a method of determining the individualism of a correc- 

tion agent is warranted. 

The following definition is presented to aid in the development of an individu- 

alism metric. 

Definition 6 Let p{ ° be the capability of correction adaptation agent j to improve 

metric pi. This capability is defined as the percentage of bids the CAj was able to 

improve metric pi. 

Given this definition, the individualism metric is defined as 

A E"- \p?Ai - pfAj I 
D(CAi, CAj) = Mindividualism =  ~ ! * j (20) 

where n is the number of requirement metrics as given in Equation (16). This defines 

how different a correction adaptation agent (word) is from another. 

Balch (1997a) proceeds to further define a social entropy metric based on In- 

formation Theory (Blahut 1987) that determines the heterogeneity (i.e., diversity) 

of the entire collection of agents, taken as a group. He defines the concept of castes 

of agents. An agent belongs to a caste if its individualism metric differs from other 

members of the caste by no more than some user-defined e. He terms this concept "e- 

equivalence." Given this discussion, the following two equations from Balch (1997a) 

define social entropy for a group G of agents: 

Pi   =    ^c   \rl (21) 
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Het{Q)   =   -5>log2(p0 (22) 
»=i 

where Cj is a caste. The values pi are normalized so that ^Pi = 1 since an agent 

may belong to more than one caste. 

Why do we care about diversity? In a perfect world, the use of grammar G 

to generate every possible word allows the CIA architecture to handle any problem. 

However, we do not live in an idealistic world. We therefore desire to have the "best" 

subset of words in L. It is conjectured that determining a priori those words giving 

the most diverse group of words will yield the best results. Over time, the best set 

of words is that set of words determined to be probabilistically useful. 

Conceptually, Mco„ero5e = 1 (Equation (18)) indicates the language L' gener- 

ated by G' contains all possible words. As already stated, this case is unrealistic. 

This metric definition begs the following question: If two languages have the same 

value for the coverage metric, are they equal? That is, can they correct the same 

types of problems that might occur? The metric as defined does not answer these 

questions. However, based on the discussion of social entropy, what is truly impor- 

tant is to ensure the right castes exist to correct user model inaccuracy problems. 

Membership in a particular caste implies all members of that caste are capable of 

improving the values of the same metrics. If all castes are considered, does there 

exist at least one caste capable of correcting each requirement metric? Based on this 

discussion, the following metric measures metric coverage: 

A number of metrics covered .    . 
"'■metric coverage = \^"J n 

where a metric is considered "covered" if there exists a caste capable of improving 

that metric and n is the number of metrics. 

The grammar, language, and performance metrics can be used to dynamically 

define a set of correction adaptation agents capable of correcting an inaccurate user 
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model. The use of the language and metrics allows the interface agent to a priori 

compute which words (i.e., correction adaptation agents) are best suited for the 

situation. If MmetriC coverage = 1 > the interface agent can use the classic set-covering 

problem algorithm (Cormen, Leiserson, and Rivest 1990) to determine the smallest 

set of correction adaptation agents capable of improving all the requirement metrics. 

However, since the language is possibly infinite, we desire to limit the size of the 

language to the assumed best agents. If this set of "best" agents turns out to be 

a collection of poor performers, the interface agent can add/delete agents based on 

their performance. 

5.6    Conclusion 

Accurate user models are necessary for ascription of user intent. This chapter 

investigated a systematic way of insuring the CIA architecture user model is always 

accurate. Four requirements for interface agents were represented. The interface 

agent's ability to meet these requirements is measured by requirement metrics and 

a requirements utility function. The use of this utility function performs two main 

functions within the CIA architecture. First, it determines when a user model is 

inaccurate. Secondly, it determines how to fix the user model. 

The use of a multi-agent system of correction adaptation agents allows the 

interface agent to dynamically determine the best possible correction of the user 

model. Each correction adaptation agent possesses a (possibly) unique method for 

correcting the interface agent's user model. The agents are domain independent and 

therefore can be used across different domains. The theory for correction adaptation 

agent evolution provides the catalyst for further study into agent team diversity. 

The difficulty in predicting the usefulness of certain correction adaptation agents 

and the desire for a more methodical design process for the construction of the 

correction adaptation agents led to the proposal presented in this chapter. The 

thoughts presented in Section 5.5 are extensible to the multi-agent systems research 
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field. If we consider, for example, each "player" in robot soccer as a correction 

adaptation agent, we can concern ourselves with which team players are best for a 

given scenario. 

Although the simple grammar presented was not used in this research, future 

work proposed in Chapter VIII presents an idea of how the grammar might be 

utilized in the CIA architecture. 
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VI.   Interface Agent Development Environment Architecture 

The main problem with existing agent development environments (such as the ones 

presented in Section 2.2) is that they fail to be more than non-agent code develop- 

ment tools with a means of specifying a communication protocol. Most development 

environments focus on the communication aspect and distribution of a task to mul- 

tiple agents. In general, one strength of agents is the ability to distribute tasks 

to specialized agents for handling those tasks (e.g., e-mail agents, calendar agents, 

information retrieval agents); focusing just on the communication aspects ignores 

other aspects of agent specification and development such as adaptivity and robust- 

ness. Furthermore, existing agent development environments treat the agent as the 

whole system. Interface agents are part of the whole system, and as such, much take 

into account the interaction between the user and target system and the interface 

agent, as well as any other agents (e.g., correction adaptation agents). The systems 

described in Section 2.2 suffer from at least one of the following weaknesses — lack 

of environment specification, adaptivity mechanisms, and agent knowledge represen- 

tation and reasoning mechanisms. Additionally, these systems do not adequately 

deal with human-agent interaction. The underlying difference between agent-based 

and software engineering-based tools is the dynamics of the environment in which 

the agents must "perform," to include the dynamic needs of the user. This chapter, 

which is an expansion on the research presented by Brown, Santos Jr., Banks, and 

Stytz (1998a), addresses these issues explicitly by proposing development methods, 

tools, principles, etc. First, this chapter identifies the primary areas where agent 

development environments are deficient. Next, an agent specification language is 

proposed as a first step towards addressing the deficiencies. The approach used is 

contrasted with existing agent development environments, showing its strengths for 

support of interface agent development.   This language supports the existing CIA 
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architecture by performing software engineering, knowledge engineering and acqui- 

sition needed to specify the interface agent's integration into a target system. 

6.1    Agent Development Environment Deficiencies 

Environment Specification. Existing environments implicitly address the 

environment where an agent must perform. An explicit representation of the envi- 

ronment can bring to the fore front critical domain considerations and enable the 

designer to identify those domain environmental features with which the interface 

agent must deal. These specifications can include system features (e.g., error mes- 

sages, available resources, sensors, system events), user interface standards, as well as 

requirements and specifications required by the human interface developer, such as 

existing business practices and work flows. Additionally, an agent development en- 

vironment must specify the target system's application programmer interface (API) 

that identifies the "marionette strings" the interface agent can "pull" to affect the 

target system (Metral 1993). Since this research is concerned with interface agents, 

it is desired to specify user behavior within the environment. This specification cap- 

tures the relationship between the environmental stimuli (i.e., pre-conditions), user's 

goals, and actions to achieve those goals (i.e., the Bayesian network user model) as 

well as the user's profile and utility model. The use of an explicit specification of 

the domain environment for agent-based development is a technique used in software 

engineering (Rumbaugh, Blaha, Premerlani, Eddy, and Lorenson 1991). 

Adaptivity Mechanisms. None of the environments explicitly address the 

fact that agents typically operate in dynamic environments, and therefore, must be 

capable of adaptive behavior. While adaptivity requirements can be addressed at 

the code level, they are better addressed at the specification level, where designers 

can determine what to adapt, how to adapt it, when to adapt it, and why. These 

adaptations must be in compliance with the environment specification. 
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Agent Knowledge Base and Reasoning Mechanisms. All but IBM's 

Agent Building Environment (IBM 1997), Reticular's AgentBuilder (Reticular Sys- 

tems 1998), and the Agent Building Shell (Barbuceanu and Fox 1996a) fail to provide 

a persistent knowledge base and underlying reasoning mechanism for agents to reason 

about their environment via sensing, acting, and reacting. The other systems merely 

provide a way for the agent to react to an explicit activation; autonomous agent be- 

havior, where the agent can reason about the actions of the user in an attempt to 

autonomously act on the user's behalf, is not addressed. A knowledge-based systems 

approach allows interface agent designers to separate the knowledge and reasoning 

mechanisms. This separation has two effects. First, a knowledge-based systems 

approach supports rapid prototyping of interface agent systems by allowing new 

knowledge to be incrementally added to the knowledge base as it becomes available. 

Second, the separation of the knowledge base and reasoning mechanism allows the 

reuse of the reasoning mechanism in other domains. A knowledge base also supports 

the persistent storage of a user model and allows the user model to be tailored to 

individual users. 

6.2   Agent Specification Language 

To address the short-comings of current agent development environments, 

the Agent Specification LANguage (ASLAN) is proposed. ASLAN shares some 

goals with existing knowledge-based software engineering specification acquisition 

tools (Lowry and Duran , pp. 292-302). In particular, ASLAN has the following 

goals: 

1. To formalize the artifacts of interface agent development and the software en- 

gineering, knowledge engineering and acquisition activities, to include method- 

ologies, principles, heuristics, that produce these artifacts. Formal specification 

languages enable specifications to be stated precisely and unambiguously. For- 

malization also facilitate the sharing and reuse of formally represented knowl- 
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edge. A specification of a representational vocabulary for a shared domain of 

discourse — definitions of classes, relations, functions, and other objects — is 

called an ontology. Gruber (1993) defines an ontology as a "specification of a 

conceptualization." 

2. To assist with the development and validation of specifications. Development 

assistance helps users resolve conflicting requirements, refine incomplete and 

informal requirements, and use domain knowledge in developing the specifica- 

tions. Validation methods can use the formal specification itself as a prototype 

or perform various types of analysis on the formal specifications. 

3. To synthesize interface agent source code and user models from formal speci- 

fications. This approach enables maintenance to be performed by maintaining 

the specification, not the source code and user model. 

ASLAN supports the existing CIA architecture and enables developers to eas- 

ily perform the needed initial knowledge acquisition for the CIA architecture. The 

proposal extends, where possible, existing methods and tools, expanding their ca- 

pabilities and coverage of agent specification and design issues. In some areas, new 

functionality is proposed; in others, the proposal merely extends existing function- 

ality to account for adaptive interface agents. ASLAN is capable of incorporating 

business practices and user interface standards (e.g., the Defense Information In- 

frastructure (DII) standards for a Common Operating Environment (COE)) as an 

independent module that automatically drives agent interface developments. This 

methodology allows for automatic and "hands-free" updating of the ASLAN spec- 

ification as business practices and user interface standards themselves are updated 

and changed. 

ASLAN uses Ontolingua (Gruber 1993) with a knowledge acquisition tool front 

end. Ontolingua is a language for representing ontologies. In relationship to agent re- 

search, ontologies describe the concepts and relationships that can exist for an agent 

or a community of agents. Gruber (1993) uses ontologies for the purpose of enabling 
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knowledge sharing and reuse between agents. An ontological commitment is an 

agreement (by the agent) to use a vocabulary (i.e., ask queries and make assertions) 

in a way that is consistent with respect to the theory specified by an ontology. While 

Ontolingua is good for representing and sharing knowledge, it is poor for acquiring 

that knowledge due to its notation and the inherent complexity of designing ontolo- 

gies. ASLAN "shields" the designer from Ontolingua. ASLAN accomplishes this 

"shielding" by allowing the designer to specify knowledge in a meaningful, intuitive 

way. This (what?) is then transformed into an Ontolingua ontology. Knowledge ac- 

quired via ASLAN can then be encoded into a KQML (Mayfield, Labrou, and Finin 

1996) application programming interface using KQML's performatives and Ontolin- 

gua's content format. This knowledge can then be shared with the agent research 

community at large and used within an interface agent-based system. This approach 

is similar to AgentBuilder's (Reticular Systems 1998). 

6.3   Addressing Agent Development Environment Deficiencies 

Current agent development environments typically focus on collaborative, au- 

tonomous multi-agent system specification and development (more the former than 

the latter). However, they tend to ignore the fact that many agents, in particular 

interface agents, need the ability to adapt to the changing needs of the user and 

environment. Furthermore, as mentioned earlier, it is desirable to develop generic 

intelligent user interface agents usable in many different domains. Generic interface 

agent development requires a robustness not found in other development environ- 

ments. 

The Intelligent Agent Development Environment Architecture (IaDEA) de- 

picted in Figure 6 explicitly addresses the deficiencies of existing agent development 

environments. The human interface developer's specifications, to include the inter- 

face agent user model, user interface standards, and the target system application 

programmers interface are specified using ASLAN. ASLAN is responsible for trans- 
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forming the Ontolingua-based specification into interface agent source code and the 

user model. These two components are used by the CIA architecture. Additionally, 

the CIA architecture uses the requirements and metrics defined in Section 5.1. The 

resulting CIA architecture can be used as a prototype that can be validated against 

the human interface developer's specifications. This feedback process allows the de- 

veloper to refine the specification. The "final" customized intelligent user interface 

is an integration between the user, target system, and CIA architecture as depicted 

in Figure 3. 

User Interface 
Standards 

Human 
Interface 
Developer 

specifications 

Figure 6 Interface Agent Development Environment Architecture (IaDEA): High- 
level process flow for construction of customized intelligent user inter- 
faces. 
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This section proceeds to describe how IaDEA can be used to address the 

above three deficiencies (i.e., environmental specification, adaptivity mechanisms, 

and agent knowledge representation and reasoning mechanisms) of existing agent 

development environments. 

IaDEA Environment Specification. To specify a target system's environment, 

IaDEA must specify what events are expected from the user interface, i.e., the stimuli 

the user interface can provide to the agent. For example, the interface agent needs 

to be able to determine when a button is pressed, a menu item is selected, the 

user exits the system, etc. Additionally, the agent must know how it can affect the 

environment where it is situated, i.e., the affectors. These affectors can either be 

defined by the target system's API or assumed that the designer of the agent will 

have direct access to the target system's source code. ASLAN can be used to elicit 

an explicit enumeration of the "call-backs" the agent can use as input from and 

output to the application. This enumeration is sufficient to capture the application 

specific stimuli and affectors. 

ASLAN supports the incorporation of user interface standards and business 

practices and work flows into the specification. An approach similar to Stary (1997) 

can be used. Stary's TADEUS (Task Analysis, Design, End-User Systems) approach, 

deals with designing intelligence interfaces by addressing what a user needs for task 

accomplishment. Work flows are migrated into the user-interface design representa- 

tions. Business goals and rules and their relationships to tasks and people involved 

can be integrated into the user interface design. Meaningful sequential activities for 

task accomplishment are determined. Profiles of various users of the system, and 

their functional roles to the task and work flows can be generated. Flow and con- 

trol of data can be made transparent and interface designers can provide notation 

that allows static and dynamic specification and adaptation of the work flow models. 

The TADEUS approach allows consistent and context-sensitive user interface devel- 

opment to be supported in the software development process and eases the use of 
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artifacts of previous development. The TADEUS approach does not consider the use 

of an interface agent to accomplish tasks on the user's behalf. The SIRDS approach 

explicitly considers the partitioning of work tasks between the interface agent and 

the user. Therefore, the TADEUS approach can be enhanced to include specification 

of those tasks the interface agent should handle. 

Interface agent development must explicitly deal with one component other 

agent systems possibly ignore — the human agent. Human users have beliefs, de- 

sires, intentions, abilities, preferences, emotions, plans, and goals. To offer beneficial 

assistance to the user, the interface agent user model must be able to capture these 

characteristics. Furthermore, the environment the interface agent and human user 

are situated in has a direct impact on the user's behaviors as well as the environment 

being affected by these two agents. This interaction between environment, user, and 

interface agent must be captured. 

The ability to accurately capture user characteristics is difficult to achieve. 

For example, there is typically not a specific user action within the environment 

that determines a certain user characteristic (e.g., intentions). However, several 

techniques from the user modeling research field are applicable, e.g., user profiles 

and stereotypes. For example, Van Veldhuizen et al. (1998) use a "skills vector" to 

define an agent's ability to perform certain tasks, measured by standardized scores. 

Human factors can be incorporated into user models (Mulgund and Zacharias 1996; 

Schäfer and Weyrath 1997; Stefanuk 1997; Gavrilova and Voinov 1997). 

As a first step towards modeling user characteristics, ASLAN can function as 

a knowledge acquisition front end to Ontoligua to specify both a user profile for a 

specific user and user stereotypes for classes of users. Any of the aforementioned tech- 

niques for specifying user profiles and stereotypes is suitable for use within IaDEA. 

With regards to specifying user intent, since a causal relationship between environ- 

mental stimuli, human factors, users' goals, and the actions users perform, ASLAN 

can use a directed acyclic graph to show this causality. Furthermore, since ascribing 
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user intent is inherently uncertain, probabilities can be assigned to the arcs in the 

directed graph. 

IaDEA Adaptivity Mechanisms. As previously mentioned, a key distinguishing 

factor between software and agent-based engineering is that agent-based engineering 

deals with dynamic environments. However, as is evident from the existing agent 

development environments, adaptivity to dynamic environments is not often explic- 

itly considered. IaDEA brings the requirement of adaptivity to the forefront of agent 

specification and design, guiding the designer to areas in the design where adaptiv- 

ity is warranted. ASLAN is responsible for specifying those components used in the 

CIA architecture's correction model. In particular, ASLAN allows the developer to 

specify the metrics and metric weights used in Equation (16). ASLAN also allows 

the developer to specify the requirements utility function value threshold, as well as 

the bid deadline. The collection of correction adaptation agents can be presented 

to the developer. The developer can determine which correction adaptation agents 

to include in the CIA architecture. The reuse of correction adaptation agents for 

multiple domains supports rapid prototyping. 

IaDEA Agent Knowledge Base and Reasoning Mechanisms. ASLAN uses 

Ontolingua. Ontolingua is not meant as a representation language for reasoning. 

For efficiency's sake, a different knowledge representation should be used for rea- 

soning. The ontology defines an adaptive intelligent agent, its environment (a user 

interface), and the user's goals and associated actions to achieve those goals within 

that environment. Since the user model's knowledge representation is probabilistic, 

a representation that can handle probabilistic reasoning is needed. Additionally, 

as mentioned previously, a causal relationship exists among environmental stimuli, 

users' goals, and actions. This causality is used to construct Bayesian networks (Pearl 

1988) based on the observable events and goals within the environment (Jameson 

1996) as described in Chapter III. 
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6.4 ASLAN - CIA Architecture Interaction 

With input/output user interface standards and requirements — such as DII- 

COE compliance and those imposed by the particular software system we are con- 

structing the interface for — fully specified in the ASLAN environment, surface 

issues are separated from the core issue of how such an interface agent should per- 

form. Each component of the CIA architecture was discussed in detail in Chapter IV. 

Recall Figure 3 gives an overview of CIA architecture including user intent predic- 

tion and continual adaptivity. The task of ascribing user intent is delegated to the 

interface agent component of the architecture, while continual adaptation of the in- 

terface agent's user model is a task shared by the interface and and a collection of 

correction adaptation agents. 

Furthermore, Figure 4 shows the architecture of the interface agent and the 

correction adaptation agents. The content of the KQML messages is specified via 

ASLAN. Each target system observation (environmental stimuli, user action, and 

human factor) can be communicated to the agents via the KQML message passing 

API. Every observation is stored by the agents' evaluator in a history stack (i.e., 

most recent observation is on the top of the stack). These observations can be used 

by the agents as evidence into the user model, represented as a Bayesian network. 

The interface agent offers assistance via suggestions to the target system (user) by 

calculating the expected utility of offering assistance for a goal, EU{Q.G)- EU(CXG) 

is calculated by performing Bayesian network belief updating on the goal random 

variable and the utility of suggesting the actions used to achieve the goal, U(G, a, A). 

6.5 Conclusion 

The need for development methodologies for agents is readily apparent. The 

approach outlined in this chapter is to use the Interface agent Development Envi- 

ronment Architecture (IaDEA), with ASLAN explicitly specifying the environment, 

to include the target system API, applicable user interface standards, user model, 
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and human factor concerns and the CIA architecture continually adapting the user 

model to the needs of the user. I do not mean to presuppose that this approach is the 

Holy Grail of interface agent development. Implemention of the approach presented 

here is sure to uncover unforeseen problems and pitfalls. However, the approach 

addresses deficiencies of current agent development environments — environment 

specification, adaptivity, and agent knowledge base and reasoning mechanisms. It 

is desired to easily and directly incorporate business practices and user interface 

standards into ASLAN to produce compliant, intelligent interface agents. In other 

words, designers can treat user interface standards as simply an input database to 

define ASLAN. This encapsulation of the input and outputs of the CIA architecture 

isolates the architecture from these concerns. 
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VII.   Experiments 

In this chapter, three disparate domains are presented — a virtual space plane, a 

probabilistic expert system shell, and a natural language query information manage- 

ment system — that were used as test beds for the interface agent research presented 

in this dissertation. These three domains were chosen for a number of reasons. First, 

all three projects are in-house research projects and the target system source code 

was easily accessible. The virtual space plane and probabilistic expert system shell 

domains provide environments with many interaction modes and tools users can 

utilize to perform thier tasks. Furthermore, the two domains are used by a wide 

diversity of users. These users can be stereotyped into one of several groups (e.g., 

pilot or navigator for the virtual space plane and knowledge engineer or user for 

the probabilistic expert system shell). Yet, individual users have preferences in how 

they interact with these domains. Therefore, these two domains provide a way to 

test the CIA architecture's ability to offer timely, beneficial assistance to users and 

to adapt that assistance to the different needs of users. The natural language query 

information management system tests the CIA architecture's ability to dynamically 

construct and adapt a user model over time as the environment (i.e., the information 

source being managed) changes over time. 

7.1    Preliminary Experiment 

The first experiment performed was designed to test the approach for user 

intent ascription presented in Chapter III. As discussed in Section 2.5, a knowledge 

engineer must determine how to construct the Bayesian network to best represent 

causality within the domain. The approach taken in this research is to observe atomic 

user actions and pre-conditions within an environment to determine what goals a 

user is pursuing so as to help the user perform the other associated actions to achieve 
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that goal. An experiment designed to validate the approach must be centered on the 

user models created by following this approach. 

Two simple user models were constructed as shown in Figure 7. All random 

variables in the networks are Boolean (i.e., true and false states) and the complete 

definition of the network is given in Appendix E. The construction of the two 

user models is similar to those presented by Jameson (1996, pp. 8-9). For the 

experiment, action A2 was set as evidence and belief updating was performed on 

all remaining nodes. Based on the discussion given by Jameson as well as general 

discussion on the effects of evidence on posterior probabilities (i.e., the conditional 

probability of a random variable after belief updating is performed) in Pearl (1988), 

results can be predicted. In Figure 7, the upper Bayesian network can be predicted 

as follows: observation that a user is pursuing a goal increases the likelihood (i.e., 

probability) that the user will perform an action to achieve that goal. The seman- 

tics of the construction of the upper network is that the interface agent is concerned 

with the conditional probabilities of the goal nodes given pre-condition or action evi- 

dence. The lower Bayesian network represents the approach discussed in Chapter IV, 

namely causality proceeds from pre-conditions (PI and P2 in Figure 7) to goals (Gl 

and G2) to actions (.Al, A2, and A3) to achieve those goals. Since the interface 

agent performs keyhole plan recognition, it never observes a user performing a goal 

explicitly1; the agent infers (via the decision-theoretic approach) a user is pursuing 

a goal given the observational evidence. Therefore, intuitively, the lower Bayesian 

network user model better represents the approach in Chapter III. The experiment 

was designed to verify this intuition quantitatively. From the discussion given by 

Jameson, observed evidence "propogates" only downward for networks constructed 

like the upper network in Figure 7. For networks constructed like the lower Bayesian 

network, evidence propagates upward and then downward. 

1For a way to relax this restriction, see Chapter VIII. 
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Figure 7     Two Simple User Models to Determine Causality Direction. 

Table 1 and Table 2 show the prior and posterior conditional probabilities for 

all nodes in the two networks. The probabilities given are for Pr(i?V = true). To 

obtain Px(RV = false), the formula Pr(RV = false) = 1 — Pr(i?V = true) is used. 

As predicted, for the upper network in Figure 7 the probability of goals Gl and G2 

increased but the other nodes' probabilities did not increase. However, for the lower 

network, observing A2 not only increased the probabilities of goals Gl and G2, but 
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Al, AS, Pi, and PI as well. The results were therefore the same as the expected 

results and the discussion presented by Jameson. These results justified the general 

construction of the user model (from pre-conditions, to goals, to actions). 

Table 1: Prior and Posterior Random Variable (RV) 

Probabilities for Upper Bayesian Network Given Evi- 

dence A2 (Pr(RV = true) only). 

RV Prior Posterior 

Al 0.70 0.70 

A2 0.35 1.00 

A3 0.75 0.75 

PI 0.55 0.55 

P2 0.45 0.45 

Gl 0.40 0.67 

G2 0.49 0.55 

Table 2: Prior and Posterior Random Variable (RV) 

Probabilities for Lower Bayesian Network Given Evi- 

dence A2 (Pr(RV = true) only). 

RV Prior Posterior 

Al 0.54 0.83 

A2 0.51 1.00 

A3 0.50 0.64 

PI 0.55 0.84 
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Table 2: Prior and Posterior Random Variable (RV) 

Probabilities for Lower Bayesian Network Given Evi- 

dence A2 (Pr(RV = true) only). 

RV Prior Posterior 

P2 0.25 0.60 

Gl 0.55 0.86 

G2 0.45 0.61 

7.2    Virtual SpacePlane 

Research in the field of intelligent interface agents for virtual environments 

was first demonstrated by the CIA architecture's integration into a virtual space- 

plane environment (Stytz and Banks 1997; Brown, Santos Jr., Banks, and Stytz 

1998b). The Virtual SpacePlane (VSP) is a prototype of the Manned SpacePlane 

(MSP), a spacecraft capable of supporting the United States Air Force's mission of 

providing worldwide deployment of space assets with minimal preflight and in-orbit 

support from a mission control center. The goals of the VSP project are to uncover, 

develop and validate the MSP's user interface requirements, develop a prototype vir- 

tual spaceplane to demonstrate MSP missions, and to conduct preliminary training 

experiments. The VSP environment is an accurate, high fidelity presentation of the 

the Earth's surface as seen from orbit, and the contents of the space environment. 

The architectural design of the VSP allows rapid prototyping of the cockpit's user 

interface and flight dynamics. 

The CIA architecture was integrated into the VSP to support VSP user as- 

sistance such as real-time information visualization and automation of the landing 

sequence. Figure 8 shows the preliminary integration of the interface agent within 

the VSP environment. Here, the interface agent has suggested the user land at Ed- 
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wards Air Force Base based on a number of observable environmental stimuli. If the 

user chooses to allow the agent to achieve this goal (by clicking on the "ok" button), 

the agent will perform the necessary actions to land the spaceplane. As a result of 

lack of resources, the user model, shown in Figure 9, was simple and covered a very 

small portion of the entire domain. 

Figure 8     The Virtual SpacePlane with an Interface Agent. 

The VSP was the first domain to benefit from the integration of the CIA 

architecture. As a result, a number of user model design issues were uncovered. 

These design considerations, discussed next, were taken into account in the other 

two domains. 
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The goal and action random variables (RVs) of the Bayesian network user 

model are Boolean. That is, the two states for the goal and action RVs are true 

and false. These RVs are set as evidence when they are observed. As a result, 

the names must be chosen carefully to convey the proper semantic meaning of 

the observation. For example, in the virtual space plane, "panels" can be open 

(i.e., viewed) or closed. The action RVs associated, for instance, with the agent 

panel is named "Open-Agent-Panel" with a true state indicating the panel is open. 

Therefore, to close the agent panel, the interface agent must suggest the value of 

"Open-Agent-Panel" be set to false. If the Bayesian network was designed to allow 

the action RVs to have non-Boolean states (for example, allowing for one action RV 

for all panels with states for each panel), the interface agent would not be able to 

suggest opening multiple panels since states of a single RV are mutually exclusive. 

There are times, however, when it might make more sense to combine several 

action RVs into one RV with non-Boolean states. One example is the communica- 

tion modes in PESKI (described in Section 7.3). A tool in PESKI can operate in 

only one communication mode (e.g., text, natural language, or graphical). There- 

fore, a knowledge engineer could design one RV, "Communication Mode" with states 

"Text," "Natural Language," and "Graphical." However, early in the design of the 

CIA architecture it was decided that goal and action RVs would be Boolean. The 

extra logic needed to allow for non-Boolean RVs was not warranted. Furthermore, ex- 

planation generation of agent assistance is easier when goals and actions are Boolean. 

To handle the "Communication Mode" situation (and obviously others), an OR sub- 

goal2 is created with one action RV for each of the mutually exclusive actions. So, for 

the communication mode example, the solution is to create an OR sub-goal named 

"Communication Mode" with three action RVs named "Text," "Natural Language," 

and "Graphical." The interface agent chooses the one action with the maximum 

expected utility. 

2The OR sub-goal functions as a logical XOR. 
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Another design technique was the segregation of human factor observables to 

the utility model. As Figure 9 shows, cognitive load was a pre-condition to the 

goal "reduce cognitive load." Although the reduction of cognitive load is a goal (in 

this case, a sub-goal) during landing, cognitive load, as well as other human factors, 

is better captured by the user's utility model. The reason to relegate the human 

factors to the the user's utility model is twofold. First, human factors (e.g., skill, 

expertise, fatigue, workload, temporal and spatial memory capacity, preferences, 

biases, prejudices, etc.) all affect the user's decision to pursue goals and perform 

actions in pursuit of goals. A user's utility model captures the influence these factors 

have on the decision making process. Second, human factors do not fit well with the 

Bayesian network user model construction approach based on the "pre-conditions 

to goal to actions" philosophy. Human factors could be considered pre-conditions 

(certainly they are not goals or actions). Recalling the discusion in Chapter III, pre- 

conditions are directly observable events and/or stimuli in the environment. These 

pre-conditions cause a user to pursue a goal and/or affect the goal a user will pursue. 

Human factors are not events or stimuli. Human factors are not typically directly 

observable but they are measurable, either a priori, such as skill or expertise, or 

dynamically as the user interacts with the environment, e.g., workload. They are 

influencing factors on the user's decision making process and thus, as the first reason 

argued, belong in the user's utility model. 

7.3   Probabilities, Expert Systems, Knowledge, and Inference 

Most everyday decisions involve some level of uncertainty. Expert systems, 

also known as knowledge-based systems, attempt to capture an expert's knowledge 

for use by non-experts. Among the advantages in using expert systems are wide 

distribution, accessibility, and preservation of scarce expertise; ease of modification, 

consistency and explanation of the answers (Gonzalez and Dankel 1993). One of the 

greatest disadvantages of expert systems is their construction. To aid experts in the 
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Figure 9     The user model for the Virtual SpacePlane. 

arduous task of designing expert systems, a number of expert systems shells exist. 

Most of these shells allow the expert system designers to capture an expert's knowl- 

edge, verify and validate that knowledge, and query this knowledge, i.e., perform 

inference. The tools available within a system vary between each shell. Some pro- 

vide a graphical means of acquiring knowledge from users. Most incorporate some 

form of verification and validation of the knowledge. However, none of these systems 

provide an integrated suite of tools for acquiring knowledge, testing that knowledge 

via verification and validation, and inference. Furthermore, these systems typically 

require complete information before they are of any use. 

The usefulness of the CIA architecure for providing assistance to users of ex- 

pert system shells is demonstrated by integration of the CIA Architecture into an 

expert system shell called PESKI (Harrington, Banks, and Santos Jr. 1996a; Har- 

rington, Banks, and Santos Jr. 1996b; Brown, Santos Jr., and Banks 1999). PESKI 

(Probabilities, Expert Systems, Knowledge, and Inference) is an integrated proba- 

bilistic knowledge-based expert system shell (Brown, Santos Jr., and Banks 1998a). 

PESKI provides users with knowledge acquisition (Santos Jr., Banks, and Banks 

1997), verification and validation (Bawcom 1997; Santos Jr., Gleason, and Banks 

1997), data mining (Stein III, Banks, Santos Jr., and Talbert 1997), and inference 
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Knowledge Organization & Validation 

Figure 10     The PESKI Architecture. 

engine tools (Shimony, Domshlak, and Santos 1997), each capable of operating in 

various communication modes. Figure 10 shows the PESKI architecture. 

The architecture consists of four major components as shown in Figure 10: 

1. Intelligent Interface Agent — Translates English questions into inference 

queries and translates the analyses/inference results back into English; provides 

for the communication exchange between the user and the system; provides 

intelligent assistance to the user. 
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2. Inference Engine — Contains the intelligent control strategies for control- 

ling the selection and application of various inference engine algorithms (e.g. 

A*, 0-1 integer linear programming (ILP), genetic algorithms (GAs)); obtains 

conclusions to user queries based on knowledge and facts in the knowledge 

base (Williams 1997). 

3. Explanation and Interpretation — Tracks the reasoning paths the infer- 

ence engine used in reaching its conclusions; allows the user to query the system 

about how and why an answer was derived. 

4. Knowledge Acquisition and Maintenance — Provides the facility for au- 

tomatically incorporating new or updated expert knowledge into the knowledge 

base. 

Architecturally speaking, PESKI is divided into three subsystems. The four 

components perform multiple functions and each PESKI subsystem combines dif- 

ferent components together for that subsystem. The subsystems as they occur in 

PESKI are as follows: 

1. User Interface — Composed of the Intelligent Interface Agent and the Expla- 

nation and Interpretation components, as well as direct manipulation interface 

components. 

2. Knowledge Organization and Validation — Consists of the Explanation 

and Interpretation component along with the human expert, optional knowl- 

edge engineer and knowledge engineering tools. Organization is accomplished 

by communicating with the Knowledge Acquisition and Maintenance compo- 

nent, ensuring compliance with the BKB consistency constraints. Validation 

is similarly accomplished except that PESKI also has feedback from the Rea- 

soning Mechanism through Explanation and Interpretation for debugging pur- 

poses. 
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3. Reasoning Mechanism — Consists of the Inference Engine and the Knowl- 

edge Acquisition and Maintenance components. The premise behind incorpo- 

rating the Knowledge Acquisition and Maintenance component is that some 

form of reasoning and possibly learning must take place in order for any new 

knowledge to be merged into the existing knowledge base. Problems such as 

consistency must be dealt with. Furthermore, we can also achieve a useful 

degree of information hiding. Under this arrangement, it is not necessary for 

any other subsystem outside of the Reasoning Mechanism to concern itself 

with the particular choice of knowledge representation. One exception is the 

Explanation and Interpretation component; however, it only needs to read and 

interpret knowledge-base information. 

7.3.1 PESKI's Integrated Tool Suite. Figure 11 shows a user utilizing the 

PESKI verification and validation, inference engine tools, and data mining. The 

tools integrated into the PESKI architecture are described next. 

• Knowledge Acquisition — PESKI uses the MACK tool for knowledge ac- 

quisition (Santos Jr., Banks, and Banks 1997). MACK contains routines de- 

signed to automatically and incrementally confirm consistency of the knowl- 

edge elicited from the expert and provides assistance via knowledge base status 

messages. Regular incremental checks preserve both probabilistic validity and 

logical consistency by flagging the inconsistent data points to the expert as 

they are entered. 

• Verification and Validation — PESKI verification and validation is per- 

formed using two tools: BVAL (Santos Jr., Gleason, and Banks 1997) and a 

graphical incompleteness tool (Bawcom 1997). BVAL validates a knowledge 

base against its requirements using a test case-based approach. A test case is 

a set of evidence and expected answers. A knowledge engineer submits a test 

case to the BVAL tool and BVAL determines if the inference engine can obtain 
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the expected answer given the evidence. Under certain conditions, the knowl- 

edge base can be corrected via reinforcement learning of the probabilities. If 

these conditions are not met and incompleteness exists (typically the result of 

a missing causal relationship between two random variables), the graphical in- 

completeness tool may be used to visualize the knowledge base incompleteness 

and correct it. The tool uses data visualization of the BKB and data mining 

to assist the user in eliciting the needed knowledge. 

• Inference Engine — The PESKI inference engine uses a performance metric- 

based approach to intelligently control a number of possible anytime and any- 

where inferencing algorithms. Results are returned to the user via the Expla- 

nation and Interpretation subsystem of PESKI as they become available. 

• Data Mining — PESKI uses a goal-directed methodology for data min- 

ing for association rules and incorporation of these rules into the knowledge 

base (Stein III, Banks, Santos Jr., and Talbert 1997). Data mining within 

PESKI can either be a knowledge acquisition, or verification and validation 

process. In the latter case, an expert attempts to correct problems discovered 

as a result of performing verification and validation. In the former, using em- 

pirical and/or legacy data, an expert is able to mine for specific rules relating 

two or more database attributes (i.e., random variables in the BKB). Addition- 

ally, the data mining tool can be used to find new states of a random variable 

and to elicit the probabilities of a single state. 

Each tool in PESKI displays the current status of the BKB, alerting the user 

to any problems with the knowledge base. PESKI supports incremental knowledge 

elicitation in a number of ways (Santos Jr., Banks, and Banks 1997). During knowl- 

edge acquisition, the user is alerted to any inconsistencies in the BKB knowledge 

representation. For example, if the user attempts to add a rule that creates a cycle 

in the knowledge base, PESKI displays an error message to the user. 
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Figure 11     PESKI Tool. This is an example of a user utilizing the Verification and 
Validation, Inference Engine, and Data Mining tools. 

7.3.2 PESKI's Intelligent Assistance Experiment. Determining which tools 

to use given a particular situation in PESKI is difficult for most users. The use of 

a particular tool is dependent on a number of variables including the context (e.g., 

a BKB constraint violation exists) and user preferences for the tools and various 

communication modes. Determining the correct tool to use at the correct time can 

be a daunting task. 

The main purpose for using PESKI as an application domain was to test the 

CIA architecture's ability to offer timely, beneficial assistance that was adaptable 

to the needs of different users. To be precise, an experiment was designed to test 

the dissertation hypothesis that the CIA architecture is an effective and efficient 
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decision-theoretic architecture for user intent ascription and that the architecture 

improves the interface agent's utility for providing assistance to the user. 

The experiment consisted of two different users: an expert user and a novice 

user. The users' user model profiles are shown in Table 3. The users' Bayesian 

network user models were structurally the same. The conditional probabilities for 

the novice's user model "favored" using the graphical communication mode, whereas 

the expert's perferred the structure text communication mode. Furthermore, the 

following two equations specify the two users' requirements utility functions: 

U™vZements   =   O.U28reacUve + O.U28precision 

+0.1428assistance capability + 0.1428external autonomy 

+0.1428collaboration + 0.1428perceptive 

+0.1428misconception (24) 

and 

Ureg^rements   =   0-0856r eaciive + 0.2precision 

+0.1428as si stance capability + 0.1A28external autonomy 

+0.1428collaboration + 0.0856perceptive 

+0.2misconception. (25) 

See Section 5.1 for the definition of the metrics used in the two equations. 

Previous research done with PESKI identified four groups of stereotypical 

users (Harrington, Banks, and Santos Jr. 1996a): an application user (i.e., novice), 

an application expert, a computer scientist, and a knowledge engineer. The user 

profiles in Table 3 are stereotypical of the novice and expert users. These two users 

were given the task of constructing a small Bayesian knowledge base. The expected 

result of the experiment was that the assistance offered to the two users would be 
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different, based on their user models and usage patterns (i.e., the actions they per- 

formed). Since the novice user has lower assistance thresholds and requirements 

utility function value threshold, it was expected that the interface agent would offer 

more assistance to the user. The expert user's high assistance thresholds indicate 

this user prefers little assistance unless the assistance is extremely beneficial (i.e., of 

high utility). The requirements utility functions for the two user's are different as 

well. The novice user places equal weights on all requirement metrics, whereas the 

expert user places greater importance (i.e., weight) on the agent's ability to make 

correct suggestions (i.e., the predictive and misconception metrics) while placing 

less importance on how quickly those suggestions can be made (i.e., the reactive and 

assistance capability metrics). 

Table 3: PESKI user model parameters for an expert and 

novice user. 

Parameter Expert Novice 

Autonomous Threshold 0.85 0.75 

Collaborative Threshold 0.50 0.25 

U requirements   ■!■ nresnoiu. 0.50 0.40 

Cut-off time 15 seconds 15 seconds 

Bid deadline time 120 seconds 120 seconds 

Expertise 0.85 0.25 

Operative memory 0.75 0.25 

Spatial memory 0.65 0.50 

Temporal memory 0.75 0.45 

Response time 0.75 0.45 
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7.3.3 PESKI Results and Analysis. The assistance offered by the CIA ar- 

chitecture while the two users were performing the task of constructing the Bayesian 

knowledge base was beneficial and was notably different for the two users. As ex- 

pected, more assistance was offered to the novice user as the result of the novice 

user's assistance thresholds. Conversely, less assistance was offered to the expert 

user. In general, the value of the novice user's requirements utility function was 

greater than the expert's value. 

The reason the expert user received less assistance was the result of the com- 

bination of expert's higher assistance thresholds and requirements utility function. 

As discussed in Section 5.1, the precision and assistance capability metrics depend 

on the ability of the interface agent to determine a correct suggestion was made. As 

a result of the expert's high assistance thresholds, the situation existed where little 

assistance was offered. Therefore, the interface agent was unable to determine if the 

assistance being offered was correct or incorrect. This resulted in the requirements 

utility function value being lower than the expert's requirements utility function 

value threshold which prompted a bidding process to correct the user model. The 

CIA architecture does not offer assistance to the user if the requirements utility 

function value is not above the requirements utility function value threshold. This 

analysis also explains why the value of the novice user's requirements utility function 

was greater than the expert's value. 

7.4    Clavin 

The Clavin System is the next step towards realizing the SIRDS vision. Clavin 

is an intelligent natural language query information management system. The Clavin 

System architecture is shown in Figure 12. The system consists of four main compo- 

nents. The human language interface (HLI) component is composed of a commercial 

off-the-shelf voice recognition system3 and a natural language (English) parser. The 

3IBM's Via Voice was used for this system. 
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voice recognition system is responsible for transforming a spoken utterance by the 

user into a natural language sentence. The natural language sentence is then parsed 

into an S-expression predicate logic representation of the user queries by the natural 

language parser (NLP) component. The well-formed formula (wff) query is then 

passed to the interface agent. 

Clavin responds to users' natural language inquiries by forming intelligent 

queries to a database of dynamic, heterogeneous information sources. Clavin main- 

tains a dynamic user model of the relevant concepts in the user inquiries as they 

relate to the information sources. The user model allows Clavin to determine the 

relevancy of the various concepts in the domain, modifying user inquiries. Clavin 

autonomously reacts to changes in the information sources, alerting the user to rele- 

vant changes in the state of the world. Furthermore, Clavin is capable of proactively 

retrieving relevant information for the user based on the current inquiries and the 

user's previous history of inquiries. 

An example of an uttered query, its wff representation, and the resulting repre- 

sentation in the user model is shown in Figure 13. Once the interface agent processes 

the query (see the discussion below), the query is passed to the retrieval engine. The 

engine parses the query wff and transforms it into a database query. Heterogeneous, 

possibly dynamic information sources are then queried by the retrieval engine. These 

information sources are represented to the user as one homogeneous information 

source. Results are then passed back to the interface agent for data visualization 

of the resulting query. If no results are returned, the interface agent can request 

the HLI to produce another possible parse (i.e., re-tag the parts of speech) for the 

uttered query. 

The CIA architecture is responsible for two key functions within the Clavin 

system: information filtering and proactive querying. The first occurs as a result of 

adding context to the spoken queries. The second occurs as a result of combining 

various relevant pieces of previous queries.   For example, if the user asks "What 
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Figure 12     The Clavin System Architecture. 
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Figure 13 A User Model Representation of the Spoken Query "What causes Lyme 
Disease?". The utterance is transformed to the wff (exists x)(exists 
y)(isA x Lyme Disease)(isA y Entity)((action causes) (actor y) (target 
x)). 

causes Lyme disease?" the system returns information about deer tick bites; then 

the user's next query asks "What treats Lyme disease?", to which the system replies 

with information concerning a new Lyme disease vaccine. At this point, the user 

model contains information about the concepts "Lyme disease," "tick bite," "Lyme 

disease vaccine," "causes," and "treats." If the user then makes a inquiry about 

"what causes cancer?" the interface agent component can use the CIA architecture 

to not only retrieve information about the causation of cancer, but also proactively 

query the database about possible treatments for cancer. The proactive construction 

of queries is discussed in the next section. 
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Within the Clavin architecture, information sources can be of a diverse variety. 

These sources may include, but are not limited to, natural language text, Hypertext 

Markup Language (HTML), World Wide Web news feeds, Usenet newsgroups, and 

"standard" databases. To adequately test the Clavin architecture, it was desired to 

have a large information source as a rich source of real world knowledge. The Unified 

Medical Language System (UMLS) provided just such an information source. 

The UMLS approach is to provide a set of widely available medical-related 

knowledge sources usable by a variety of application programs. The UMLS consists 

of three main components: a Metathesaurus, Semantic Network, and SPECIALIST 

Lexicon4. The Metathesaurus provides information about concepts in the system, 

including its definition, its semantic types, concepts it is related to, etc. Via the 

Metathesaurus, a user can also request information about specific attributes them- 

selves (e.g., requesting all concepts assigned to a particular semantic type). The 

Semantic Network contains information about semantic types and their relationships 

using the inheritance property of the network type hierarchy. Using the Semantic 

Network, the user may specify queries about a semantic pair and the relationships 

between the semantic pairs. Any of the three parameters may be left unknown, allow- 

ing the user to specify a wide variety of queries. The SPECIALIST Lexicon contains 

all lexical records for each word or term as syntactic, morphological (i.e., structure), 

and orthographic information. Lexical entries may be single or multi-word terms 

and include information concerning syntactic category, inflectional vocabulary, and 

allowable complementation patterns. 

7.4-1 Clavin User Model Construction. The use of the interface agent in 

the Clavin system is different here in that the user does not perform explicit ac- 

tions per se in the environment that are observable. To ascribe user intent, interface 

agent designers must identify the salient characteristics of a domain environment 

4The component names are capitalized in keeping with the UMLS's method of designating the 
names. 
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and specifically determine goals a user is trying to achieve, the reason and/or cause 

for pursuing those goals, and the actions to achieve those goals. For the Virtual 

SpacePlane and PESKI domains, the user model (i.e., the goals, actions, and pre- 

conditions and associated probabilities and utility functions) could be elicited a pri- 

ori. However, the robustness of the CIA architecture and knowledge representation 

allows us to model the spoken inquiries from the user as well as the return answers 

to the database queries to effectively help the user. 

As Figure 13 shows, the user's inquiry, as represented by the wff, has a hier- 

archical structure representation within the Bayesian user model. The leaves of the 

graph are actions and the rest of the nodes are sub-goals, except for the query node, 

which is a goal node. 

To construct proactive queries based on relevant concepts within the user 

model, the interface agent uses the rank ordering feature of the decision-theoretic 

CIA architecture. Internally, at each time slice (i.e., observation), the CIA archi- 

tecture ranks every node in the user model. When the user utters a new inquiry, 

the interface agent and correction adaptation agents receive notification that a new 

query has been added to the user model by the wrapper agent. For the Clavin sys- 

tem, a domain-dependent correction adaptation agent was designed to proactively 

generate new queries based on the user's current inquiry and past inquiries and con- 

cepts seen. Taking the rank ordering of the nodes for the most recent time slice, this 

correction adaptation agent performs a traversal over previous queries to determine 

which might be candidates for a proactive query. The agent only selects queries with 

an expected utility greater than the user's autonomous threshold, and which guar- 

antees that resulting proactive query will have an expected utility greater than the 

user's autonomous threshold. This approach insures the interface agent will make 

this query autonomously. After candidate queries have been selected, the children of 

these queries are considered for inclusion in the proactive query. The chosen children 

are then further processed to determine which of their children are processed. There 
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are several considerations when generating the proactive query. If a parent was se- 

lected for the proactive query, at least one child will be, since the expected utilities 

are added and normalized for AND nodes and the maximum expected utility child 

is selected for OR nodes. 

74.2 Related Work. The Microsoft Office '95 Answer Wizard (Heckerman 

and Horvitz 1998) takes a Bayesian perspective on information retrieval for infer- 

ring the goals and needs of users. The approach centers on the resource-intensive, 

declarative construction of probabilistic knowledge bases (Bayesian networks) for 

interpreting user queries. The authors state 

people typically are unfamiliar with the terms that expert users or soft- 
ware designers may use to refer to structures displayed in a user interface, 
states of data structures, and classes of software functionality. 

The authors assume that the order of terms in a query is irrelevant and terms not 

available in their lexicon are ignored. Furthermore, the author's assume term inde- 

pendence. Clavin does not make any of these assumptions. As the authors contend, 

these assumptions may lead to significant information loss, given the importance of 

structure and dependencies among words in human communication. The authors 

are extending their research by looking into ways to automatically construct the 

Bayesian networks used. 

7.4-3 Issues. The following issues arise within the context of the Clavin 

System. 

1. "On-the-Fly" User Model Construction: The CIA architecture's 

decision-theoretic approach offers a framework with which to determine which 

sub-queries are relevant and can be combined to make proactive queries on 

behalf of the user. By using the expected utilities of the various sub-query 

concepts (e.g., isA(x, dog), color(y, red), action (hit (John, ball))), the interface 

agent can combine those sub-queries with high expected utility. This approach 
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allows the agent to combine concepts in meaningful, non-ad hoc fashion. This 

procedural-based user model construction method allows the CIA architec- 

ture to begin with no domain knowledge and incrementally construct the user 

model as the user interacts with Clavin. This unanticipated side benefit allows 

designers to mitigate the classic knowledge acquisition bottleneck problem. 

2. Agent Autonomy: As discussed in the definitions on agent requirements, 

autonomy alone perhaps best defines agency. Since Clavin interacts with many 

heterogenous information sources, some of them dynamic (e.g., news streams), 

the interface agent component of Clavin should be free to autonomously fetch 

new information, reason over it, and present updated results to the user. The 

issue becomes the following: how much autonomy should the agent have? 

3. Dynamic Information Sources Unlike the Microsoft Office '95 Answer Wiz- 

ard, Clavin is presented with dynamic, possibly massive information sources. 

Therefore a declarative approach to user model construction is not feasible. 

The sub-query relevance approach taken in Clavin offers a useful alternative to 

the declarative approach as well as data-centric, statistical learning approaches. 

7.5    Conclusion 

This chapter presented three disparate domains — a virtual space plane, a 

probabilistic expert system shell, and a natural language query information manage- 

ment system. These domains are most assuredly not toy domains. The diversity of 

the three domains and the integration of the CIA architecture into these domains has 

shown the robustness of the architecture. These domains have also served to show 

the usefulness of the decision-theoretic approach to ascribing user intent used by 

the CIA architecture. Results indicate the CIA architecture is an efficient, effective, 

and extensible architecture for user intent ascription. The architecture is capable of 

providing assistance that is tailored to individual users' needs. This assistance can 

be adapted to the dynamic needs and goals of users over time. 
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VIII.   Future Research 

There are a number of existing issues raised by this research and these issues are 

fruitful areas for future research. The items are presented in order of expected benefit 

to the CIA architecture. 

1. Computational Cognitive Architecture — In order to dynamically cal- 

culate the various human factors, an accurate computational cognitive model 

of the various human factors is required. In this dissertation, several human 

factors were chosen and utility functions were calculated for these. As a result 

of the lack of a computational cognitive architecture, all but one of the human 

factors were static and provided a priori in the user's profile. The problem 

of representing the dynamics involved with all the human factors was beyond 

the scope of this research. However, the CIA architecture supports the dy- 

namic calculation of the human factors. The dynamic calculation of workload 

is a testament to this support. Future work needs to focus on an improved 

architecture that can calculate the value of all the human factors. 

2. Learning User Utility Models — The approach used in this research was 

to specify the user's utility models was an expert systems approach similar to 

the one presented by Horvitz and Rutledge (1991). Automated learning of the 

utility functions, such as the methods discussed by Rust (1996), would ensure 

more accurate, dynamic utility models. 

3. IaDEA Implementation — As mentioned in Chapter VI, the Interface agent 

Development Environment Architecture (IaDEA) is not yet implemented. To 

ease future integration of the CIA architecture into other domains and to en- 

hance the architecture's use in the three existing domains, IaDEA must be 

realized. As a first step towards realizing IaDEA, it should be developed to 

support the existing CIA architecture, requirements, metrics, and correction 

adaptation agents. 
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4. Interactive User Models — In the implementation of the interface agent's 

user model, a user may view the Bayesian network user model graphically. 

As a result of viewing the user model, the user develops a better model of 

the interface agent's model of the user. This action however occurs only at 

the explicit request of the user and the graphical display is static and non- 

interactive. Kay (1996) describes the usefulness of providing an interactive 

user model. In particular, she states the main advantage is allowing the user 

to collaboratively help the agent elicit information about the user. Kay realizes 

this advantage by providing users the urn toolkit. The urn toolkit is usable by 

a wide diversity of users because of its flexibility in the kinds of models it can 

represent. These models range from a simple list of user model component 

names (with descriptors and explanations) to elicitation tools and graphical 

viewers. 

Within the Core Interface Agent architecture, providing users an interactive, 

visual user model is beneficial for several reasons. First, the interactive user 

model allows for increased collaboration between the user and agent and, as a 

result, a more accurate (as measured by the requirements utility function) user 

model. Secondly, a user can indicate which goal he/she is pursuing explicitly 

versus the interface agent attempting to recognize the user's goal via keyhole 

plan recognition. For example, a user could click on the goal node. The inter- 

face agent would then perform the actions associated with the goal. Thirdly, 

and related to the second benefit, a user can view the actions associated with 

a goal, possibly correcting misconceptions and misunderstandings about which 

actions must be performed to achieve a goal. Fourth, viewing the agent's user 

model solidifies the user's model of the interface agent's user model. Finally, 

the user can correct an incorrect user model. 

5. Detecting User Misconceptions — The interface agent could offer assis- 

tance for misconceptions. The CIA architecture possesses several artifacts that 
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would allow this enhancement to be implemented. The CIA architecture stores 

a rank ordering of the goals based on expected utility. If user performs actions 

outside top-ranked goals, then we have one of the above two situations. Us- 

ing the misconception metric defined in Equation (17) as an indicator that a 

misconception exists, the interface agent can engage in a correction bidding 

process with correction adaptation agents capable of improving this metric. 

Currently these correction adaptation agents do not exist. 

6. Correction Model Improvements — Another improvement could leverage 

the work in multi-agent system cooperation work. In particular, the correc- 

tion model presented in Chapter V along with the associated E and II (see 

Appendix C) assume simple interaction between correction adaptation agents. 

Specifically, the agents are what is termed "level-0" agents. That is, they have 

no knowledge about other agents, only their own internal knowledge about 

their own actions and "world." There exists numerous researchers investigating 

various levels of agents and the methods for modeling the other agents (Gmy- 

trasiewicz 1996; Zeng and Sycara 1996; Noh and Gmytrasiewicz 1997; Haynes, 

Sen, Schoenefeld, and Wainwright 1995; Haynes and Sen 1997; Müller 1996; 

Vidal and Durfee 1997; Parkes and Ungar 1997). For example, Zeng and 

Sycara (1996) present a market-based multi-agent system where the agents 

use a Bayesian belief updating to learn to negotiate based on what an agent 

"believes" the other agents might bid in the market. 
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IX.   Conclusions 

While GESIA was a first step towards realizing the SIRDS goal, the research pre- 

sented in this dissertation has served to greatly advance this goal. This research 

has successfully tested the hypothesis of providing an effective, efficient, and exten- 

sible uncertainty-based architecture for user intent ascription. While certain aspects 

of the approach are addressed by other research, no one has taken a synergistic ap- 

proach combining the three most prominent research fields in interface agent research 

— artificial intelligence, human-computer interaction, and user modeling. Valida- 

tion of the larger framework hypothesis within which this work was performed, a 

holistic, decision-theoretic methodology for the interface agent development life cy- 

cle, was beyond the scope of this research due to the immense size of the problem. 

However, in addition to the CIA architecture, several advances were made in this 

arena. In particular, the in-depth analysis of human-computer interaction, artificial 

intelligence, and user modeling interface agent research identified the strengths and 

weaknesses of these three fields as well as relevant interface agent research in these 

fields. Furthermore, an investigation of tools to support the development of interface 

agents uncovered major deficiencies in these environments, including a lack of en- 

vironment specification, adaptivity mechanisms, and knowledge base and reasoning 

mechanisms. These deficiencies were addressed in the intelligent agent development 

environment. ASLAN supports the existing CIA architecture by providing guid- 

ance to interface agent developers for what is important to model within the target 

system environment. The reuse of the correction adaptation agents and reasoning 

mechanism and the knowledge-based systems approach supports rapid prototyping 

of interface agents into new application domains. 

The CIA architecture addresses the need for effective, efficient, and extensible 

uncertainty-based architectures for user intent ascription. The use of "probabil- 

ity modules" (Winston 1984) is an ad hoc approach to ascribing user intent.  Fur- 
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thermore, these modules do not readily support the addition and deletion of rules. 

The Bayesian network-based user model handles the inherent ambiguity in ascribing 

user intent. Furthermore, the network's directed, acyclic graph structure is a good 

choice for capturing the causal relationship between pre-conditions, goals, and ac- 

tions. Where purely statistical correlation approaches only consider the likelihood 

of offering assistance to users, the decision-theoretic approach used by the CIA ar- 

chitecture also considers the utility in offering this assistance. The user's utility 

model explicitly models the affect human factors have on the user's decision making 

process. This model allows the interface agent to account for the reasons (i.e., why) 

a user chooses an action in pursuit of a goal. 

The keyhole plan recognition approach for user intent ascription is valid and 

has been used in other related systems (e.g., Albrecht, Zukerman, Nicholson, and 

Bud (1997) and Waern (1996)). This dissertation improves on their work by using 

a decision-theoretic approach which allows the interface agent to determine both 

the likelihood a user is pursuing a goal as well as the user's desire for assistance. 

Additionally, since the interface agent can offer collaborative assistance, the user is 

able to explicitly confirm or deny the actual benefit of the assistance offered. This 

user interaction with his/her user model, to include the ability to set assistance 

thresholds and an agent's proactiveness, ensures the user remains in control of the 

assistance offered. With regards to research using a decision-theoretic approach to 

offering assistance to users (e.g., Breese and Heckerman (1996), Horvitz and Barry 

(1995), Horvitz and Rutledge (1991) and Karagiannidis, Koumpis, and Stephanidis 

(1996)), the research presented in this dissertation offers the benefit of user model 

correction, to include dynamic, procedural-based construction of the user model. 

The approach used by all the cited references is to construct the user model a priori 

with the use of expert knowledge. The research presented in this dissertation has 

shown that the user models may be constructed "on the fly," greatly reducing the 
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knowledge acquisition bottleneck. This construction method is absolutely necessary 

when dealing with environments with voluminous, dynamic information sources. 

The correction model along with the set of requirements and associated metrics 

for measuring the interface agent's capability in meeting the requirements prevents 

the "mindless" corrections to the user model that would have little or no impact, or 

possibly adversely affect the interface agent's performance. Existing approaches to 

modifying user models over time suffer from two problems. The first is an inability 

to determine when and how to correct the user model. The CIA architecture's 

correction model focuses on corrections that have the greatest impact on improving 

the user model. Second, existing systems have limited methods (typically only one) 

of adapting the user model. The CIA architecture has no theoretical limitations on 

the number of correction adaptation agents that may be included in the bidding 

process. One of the most fruitful areas for future research following this dissertation 

is an in-depth investigation into correction adaptation agent evolution. Additionally, 

as mentioned previously, the correction model can function not only to maintain the 

user model but to acquire new knowledge as well. 

The experiments performed and results obtained served two main purposes. 

First, the experiments and results showed the CIA architecture is an effective, effi- 

cient, and extensible architecture for user intent ascription. The CIA architecture 

can offer assistance that is beneficial to a wide diversity of users based on the users 

preferences, biases, application usage, etc. The architecture is robust in that it can 

be used for widely disparate domains. The side benefit of the decision-theoretic 

approach, a procedural-based knowledge acquisition approach, is one of the most 

rewarding results of the research performed. Second, these experiments and results 

have shown several key areas for future research. The ability to provide a computa- 

tional cognitive architecture as well as the ability to learn the user's utility models 

should greatly improve the CIA architecture's utility for providing assistance. 
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Appendix A.   Publications 

In addition to the motivating publications listed in Section 1.1, a number of publica- 

tions are a direct product of my research. The conference topics are diverse, ranging 

from artificial intelligence to autonomous agents to training systems. This diversity 

is a testament to the broad contribution the research presented in this dissertation 

represents. The publications are as follows: 

• The principle of symbiotic information retrieval and decision support as an ap- 

proach for collaborative, decision-theoretic assistance was presented at the 19th 

Interservice/Industry Training Systems and Education Conference (Banks, 

Stytz, Santos Jr., and Brown 1997). The paper was nominated for best con- 

ference paper. 

• The use of utility functions for intelligent decision making in user models for 

interface agents was presented at the Twelfth Canadian Conference on Artificial 

Intelligence (Brown, Santos Jr., and Banks 1998b). 

• The correction model and the concept of user model adaptation via a multi- 

agent system was presented at the Second International Conference on Au- 

tonomous Agents (Brown, Santos Jr., Banks, and Oxley 1998). 

• The proposal for an integrated development environment to support the devel- 

opmental life cycle of interface agents was presented at the AAAI-98 workshop 

on software tools for agent development (Brown, Santos Jr., Banks, and Stytz 

1998a). 

• The integration of the CIA architecture into PESKI was presented at the 

AAAI-98 Spring Symposium Workshop on Interactive and Mixed-Initiative 

Decision-Theoretic Systems (Brown, Santos Jr., and Banks 1998a). 
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• The integration of the CIA architecture into the virtual space plane was pre- 

sented at the AAAI-98 Spring Symposium Workshop on Intelligent Environ- 

ments (Brown, Santos Jr., Banks, and Stytz 1998b). 
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Appendix B.   Human Factor Attribute Assessment 

A user's profile captures the static human factor, such as skill. These factors are 

determined off-line and are assumed static throughout the interaction. However, 

the CIA architecture supports update of the static human factors, if necessary. The 

difference between a static and dynamic human factor is that static human factors 

are not re-assessed at each time increment, whereas dynamic human factors are. 

Each human factor is scaled with a real number between 0 to 1, 1 indicating the 

best (e.g., expertise = 1 indicates an extremely skilled user, temporal memory = 0 

means the user forgets everything). This number is, in a sense, a measure of the 

human's ability with respect to the human factor. 

The following static human factors were used by the CIA architecture: 

• Expertise 

• Operative Memory 

• Temporal Memory 

• Spatial Memory 

• Response Time 

For the experiments in this dissertation, workload was the only dynamic human 

factor. Numerous researchers have attempted to define workload within the confines 

of a specific domain. One of the goals of the interface agent is to reduce the workload 

on the user. Therefore, the more actions the interface agent performs for the user, 

the more user's workload is reduced. 

A user's workload is assessed as follows: 

, \user actions\ 
user work   = 

time 

| user actions + agent actions \ 
user time 

user time + agent time 
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,,    , user work 
user workload   =    : . 

time 
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Appendix C.   Correction Model Protocol and Strategy 

Chapter V stated the bidding process correction model is adopted from Müller 

(1996). The negotiation protocol function IT and negotiation strategy function E 

introduced in Definition 5 were implemented to model a sealed-bid, single award 

strategy. The two functions (adapted from Müller (1996, pg. 253)) are given as 

follows: 

Definition 7 Let the negotiation protocol function be U = (K, n : A x K i-> 2K). 

Let A = {I A, CAi,...,CAn} be a set of agents where IA represents the interface 

agent and CAi represents a correction adaptation agent. Let t be the bid deadline 

time in seconds and b be the bid. Let ir be defined as: 

' {ANNOUNCE®} ifa = IA,k = start, 

{BID(bi)} ifa = CAi, k = ANNOUNCE®, 

7r(a, k) = {   {REJECT(bi), ACCEPT fa)} ifa = IA,k = BID(bi), 

{done} ifa = IA,k = REPORT fa), 

{done} ifa = CAi, k = REJECT^) 

Definition 8 Let the negotiation strategy function beH = {<7j : UxAxKx2DxU (-»• 

K x N\l < i < k}. Let <7«(II, au k, N, m) = (k1, N') with k' e TT(OJ, k), N C JV. E is 

defined as follows1: 

aIA(start,N,uIA)   =   {ANNOUNCE{t),[uIA,l\) 

acAi(ANNOUNCE(t),N,uCAi)   =   {BID(uCAi),{uCAi,l}} 

ajA(BID(ucAi), N, uiA)   =   if bids-received = n or elapsedJime > t then 

ACCEPT{\N\)to CAi with bid{[N\) and 

REJECT([Nj)to CAj,j^i 

1 When the protocol II and agent a £ A are understood, they are omitted. 
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ifucAi > [N\ then N = [uCAi, 1]; 

acAAREJECTiucA^N^cAj)   =   (done,N),i^j 

ac^ACCEPT^N.ucAi)   =   (REPORT(uCAi),N) 

acAtiREPORTibi^N^cAi)   =   (done,N). 

Semantically, 7T and (TJ can be summarized as follows: at the start of the 

bid process, the interface agent announces the bid deadline, t, to all the correction 

adaptation agents. Each correction adaptation agent makes a bid, fej. A bid is 

rejected outright if it will not improve the interface agent's user model. The best 

bid is accepted and all others are rejected. When the bid has been accomplished, 

the winning correction adaptation agents reports back to the interface agent. 
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Appendix D.   Correction Adaptation Agent Implementation 

The CIA architecture allows for any number of correction adaptation agents. For 

the research performed in this dissertation, a total of thirteen correction adaptation 

agents were implemented. These agents were chosen for both their ease of imple- 

mentation (several of the agents differ from one another by only a few lines of C++ 

code) and their usefulness to alter the user model parameters and structure. The 

correction adaptation agents implemented are given in Table 4. 

Table 4:    Correction Adaptation Agents Implemented for 

PESKI and Clavin 

Name Description 

BKD Probability Update Updates the probabilities in the conditional probabil- 

ity tables by using the Bayesian Knowledge Discov- 

erer (BKD) data mining tool (Ramoni and Sebastiani 

1997). 

Query Update Agent This agent was used by Clavin only. It adds new 

queries from the user to the interface agent user 

model. It also adds proactive queries as described 

in Chapter VII. 
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Table 4:    Correction Adaptation Agents Implemented for 

PESKI and Clavin 

Name Description 

History Fading Three separate agents adapt the history fading. One 

increases or decreases the number of observations 

stored in the evaluator history stack based on the 

simple reinforcement learning. Two other agents per- 

form history fading: one for increasing and one for 

decreasing the number of observations. These are 

simpler agents (as compared with the agent using re- 

inforcement learning). History fading is similar to the 

way other researcher fade observations (Foner 1994; 

Waern 1996); however, they do not adapt the length 

of the fading. These fading functions have precedence 

over the observation fading function (detailed next). 

That is, if the interface agent allows, for example, five 

observations via the observation fading function, but 

the history fading function allows only one observa- 

tion, the agent "forgets" observations older than the 

last one. 

Periodic Update Fading Three separate agents adapt the update period. Re- 

call the interface agent performs periodic belief up- 

dating if no new evidence arrives from the target 

application. These three faders alter the periodic- 

ity of the update. As with the history fading agents, 

one agent uses simple reinforcement learning and two 

other agents are used to perform an increase and de- 

crease, respectively, of the periodicity. 
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Table 4:    Correction Adaptation Agents Implemented for 

PESKI and Clavin 

Name Description 

Cut-off Time Fading Three agents update the cut-off time, akin to the his- 

tory fading and period update agents. That is, the 

agents increase or decrease the amount of time the 

interface agent has to offer assistance per Equation 

(10). 

Bid   Deadline   Cut-off   Time 

Fading 

Three agents alter the bid deadline. These agents ei- 

ther increase or decrease the amount of time the cor- 

rection adaptation agents have to respond to a bid per 

Equation (15). The shorter the deadline the quicker 

the interface agent can reward the best bidder. How- 

ever, some correction adaptation agents may not be 

able to bid in time, affecting the correction adapta- 

tion quantity metric (see Equation (14)). 

Metric History Fading Increases or decreases the number of time slices in- 

cluded in the calculation of the metrics, and there- 

fore requirements utility function. If the metrics are 

calculated over only the most recent time slice, the 

metrics and requirements utility function capture how 

well the interface agent met its requirements for the 

last suggestion. If the metrics are calculated over the 

entire history, this measures how well the interface 

agent has met its requirements over this history. 

Fading functions are used to "forget" past evidence. Two different fading 

functions were used — one for wall clock time, one for length (no more than N 

observations). For each fading function, we have one of two possible actions: increase 
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or decrease the fading function. We divide our state space differently for each fading 

function. For wall clock time, the state space is divided into seconds; for the length, 

the state space is divided by integer lengths. 
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Appendix E.   Bayesian Network Experiment Definition 

This appendix contains the definition of the two Bayesian networks described in 

Chapter VII and shown in Figure 7. The upper Bayesian network in Figure 7 is 

defined by variables gl, g2, ol, o2, a3, pl,and p2. The lower Bayesian network is 

defined by variables g3, gA, a4, a5, 06, p3, and p4. 

// Bayesian Network in the Interchange Format 

// Produced by BayesianNetworks package in JavaBayes 

// Output created Fri Aug 28 08:58:06 EDT 1998 

// Bayesian network 
network Internal-Network{ 
//14 variables and 14 probability distributions 

} 
variable gl{//2 values 

type discrete[2] { False True }; 
property position = (201, 253) ; 

} 
variable g2{//2 values 

type discrete[2] { False True }; 
property position = (117, 267) ; 

} 
variable a2{//2 values 
type discrete[2] { False True }; 
property position = (136, 143) ; 

} 
variable al{//2 values 
type discrete[2] { False True }; 
property position = (227, 147) ; 

} 
variable a3{//2 values 
type discrete[2] { False True }; 

property position = (45, 139) ; 

} 
variable pl{//2 values 
type discrete[2] { False True }; 
property position = (192, 119) ; 

} 
variable p2{//2 values 
type discrete[2] { False True }; 

152 



property position = (69, 
} 
variable g3{//2 values 
type discrete[2] { False 
property position = (407, 
} 
variable a4{//2 values 
type discrete[2] { False 
property position = (444, 
} 
variable a5{//2 values 
type discrete[2] { False 
property position = (348, 
} 
variable a6{//2 values 
type discrete[2] { False 
property position = (271, 
} 
variable g4{//2 values 
type discrete[2] { False 
property position = (314, 
} 
variable p3{//2 values 
type discrete[2] { False 
property position = (428, 
} 
variable p4{//2 values 
type discrete[2] { False 
property position = (311, 

103) ; 

True }; 
379) ; 

True }; 
455) ; 

True }; 
467) ; 

True }; 
472) ; 

True }; 
365) ; 

True }; 
287) ; 

True }; 
263) ; 

probability ( gl 
table 0.99 0.5 0 
0.01 0.5 0.17 0. 
} 
probability ( g2 
table 0.99 0.83 ( 
0.01 0.17 0.5 0.1 
} 
probability ( a2 
table 0.65 0.35 
} 
probability ( al 

al a2 pi 
.83 0.33 
37 0.33 0 

) { //4 variable(s) 
0.67 0.83 0.5 0.01 
.17 0.5 0.99 ; 

and 16 values 

a2 a3 p2 
D.5 0.33 
57 0.5 0. 

) { //4 variable(s) 
0.5 0.33 0.83 0.01 
67 0.17 0.99 ; 

and 16 values 

) { //l variable(s) and 
> 

2 values 

) { //l variable(s) and 2 values 
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table 0.3 0.7 ; 

} 
probability ( a3 ) { //l variable(s) and 2 values 

table 0.25 0.75 ; 

} 
probability ( pi ) { //l variable(s) and 2 values 

table 0.45 0.55 ; 

} 
probability ( p2 ) { //l variable(s) and 2 values 

table 0.55 0.45 ; 

} 
probability ( g3 p3 ) { 112  variable(s) and 4 values 
table 0.95 0.05 0.05 0.95 ; 

} 
probability ( a4 g3 ) { 112  variable(s) and 4 values 
table 0.95 0.05 0.05 0.95 ; 

} 
probability ( a5 g3 g4 ) { //3 variable(s) and 8 values 
table 0.99 0.67 0.33 0.01 0.01 0.33 0.67 0.99 ; 

} 
probability ( a6 g4 ) { 112  variable(s) and 4 values 
table 0.9 0.01 0.1 0.99 ; 

} 
probability ( g4 p4 ) { 112  variable(s) and 4 values 
table 0.99 0.01 0.01 0.99 ; 

} 
probability ( p3 ) { //l variable(s) and 2 values 

table 0.45 0.55 ; 

} 
probability ( p4 ) { //l variable(s) and 2 values 

table 0.55 0.45 ; 

} 
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